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Abstract

Autonomous robots must communicate about their decisions
to gain trust and acceptance. When doing so, robots must de-
termine which actions are causal, i.e., which directly give
rise to the desired outcome, so that these actions can be in-
cluded in explanations. In behavior learning in psychology,
this sort of reasoning during an action sequence has been
studied extensively in the context of imitation learning. And
yet, these techniques and empirical insights are rarely applied
to human-robot interaction (HRI). In this work, we discuss
the relevance of behavior learning insights for robot intent
communication, and present the first application of these in-
sights for a robot to efficiently communicate its intent by se-
lectively explaining the causal actions in an action sequence.

1 Introduction
Interactive robots need to be able to communicate effectively
about their intended actions in order to be trusted and ac-
cepted. For example, robots often need to be able to proac-
tively communicate about their intended behaviors and the
rationale for those behaviors (Peng et al. 2019; Baraglia et al.
2016). In this paper, we explore the insights for this pro-
cess that might be drawn from the psychological subfield of
behavior learning, concerned with “the acquisition of atti-
tudes, values and styles of thinking and behaving through
observation of the examples provided by others (i.e., mod-
els)” (Bandura 2008). Of particular relevance within behav-
ior learning is imitation learning, studying how children and
adults (Whiten et al. 2016; Buttelmann et al. 2017) learn to
imitate action sequences of others (Buchsbaum et al. 2011).

Psychological research on imitation learning has uncov-
ered two types of behavioral patterns in people’s imitation
learning. Some researchers found that, instead of copying
exactly the same sequence of actions demonstrated by oth-
ers, people can rationally learn to extract and produce most
causal actions necessary to achieve some outcome (Buttel-
mann et al. 2017). Others found that people tend to over-
imitate, copying not only necessary and causal behaviors but
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also unnecessary and non-causal behaviors, because they be-
lieve those behaviors are normative (Kenward 2012). Many
robotics researchers have used imitation learning theories to
model how robots can learn from demonstration; but we ar-
gue that the rational imitation paradigm should also be used
to understand how robots can generate explanations that are
understandable to human observers.

Similarly, while roboticists have a long history of study-
ing the structure and use of action sequences (Haazebroek,
Van Dantzig, and Hommel 2011; Nakawala et al. 2018), in-
cluding their representation as state machines or behavior
trees (Colledanchise and Ögren 2018), these efforts typically
focused on underlying representation structures that robots
can use to represent behaviors (Haazebroek, Van Dantzig,
and Hommel 2011). In contrast, we argue that psycholog-
ical insights regarding action sequence representation from
human’s perspectives should also be used to understand how
robots can generate effective explanations regarding their
own internal states (Han et al. 2021; Brooks et al. 2010).

If robots leverage structured representations of action se-
quences to communicate their intents, a key question is what
elements of those sequences to communicate. Researchers
in robotics, HRI, and explainable AI have used a variety of
approaches to choose which states and actions to communi-
cate. For example, Huang et al. (2018) present an entropy-
based method for identifying critical states in the context
of autonomous driving, and Olson et al. (2019) formulate
an optimization problem to generate counterfactual states
in the context of an Atari game. Yet technical research in
this area has left the highly relevant psychological litera-
ture on observational learning (including its consideration of
causality) relatively underexplored. For example, this litera-
ture suggests that humans differentiate between causal and
non-causal actions in their imitations. We argue that robots
must similarly differentiate between causal and non-causal
actions in their explanations, as inclusion of all low-level
actions would be overly verbose. Decades of previous work
have demonstrated the importance of brevity (i.e., follow-
ing Grice’s maxims of quantity and manner (Grice 1975))
in automated explanation generation (Young 1999; Singh
et al. 2021), and demonstrated human preferences for (and
higher performance under) brevity (Bohus and Rudnicky
2008) with both dialogue system and robots (Han, Phillips,
and Yanco 2021). In this paper, we thus draw on additional



insights from the field of observational learning to identify
how robots can choose the most salient causal actions to
communicate in their explanations.

2 Applying Observational Learning Insights
A key theory from observational learning that can be applied
is social cognitive learning theory (SCLT), which seeks
to explain how humans observe and learn the sequences of
actions others use to achieve desired outcomes (Bandura
2008). SCLT considers four subprocesses of observation: (1)
attention: Observers must attend to and perceive the model-
ing episode to profit from guidance (Yussen 1974); (2) reten-
tion: Observers must discriminate and symbolically repre-
sent the modeled behavior to make it easy to recall (Bandura
and Barab 1971); (3) motor skills: Observers need key mo-
tor skills to translate knowledge into physical movements;
(4) motivation: Observers must be motivated to minimize
departure of learned actions from demonstrated actions.

In a situation where a robot attempts to communicate
the intent underlying its action sequence, the robot can be
viewed as “a model” and the human as “an observer” in
SCLT. In such a situation, the four subprocesses above have
important implications for how a robot should convey its in-
tent to humans.

First, we found that people prefer robots to get their at-
tention by addressing them before verbally explaining (Han,
Phillips, and Yanco 2021). Previously, Bruce, Nourbakhsh,
and Simmons (2002) found attention is key to robots’ suc-
cess at initiating communication. For retention, robots must
provide humans an easily memorable summary of their in-
ternal states (Brooks et al. 2010) to facilitate accurate sym-
bolic representation of those states in the mind of their inter-
locutors. This may be achieved by organizing and selecting
high-level behaviors first (Han et al. 2021) rather than di-
rectly externalizing arbitrary internal states. For motor skills,
non-human-like and non-deterministic robotic movements,
produced by probabilistic methods (LaValle et al. 1998;
Thrun, Burgard, and Fox 2005), might be troublesome to
understand and may not lead to quality physical responses.
The final component of Bandura’s social cognitive learning
theory is ensuring observer motivation. However, in the case
of robot explanation generation, we can assume that the lis-
tener who requested an explanation is motivated to listen to
and try to understand that explanation, under an assumption
of good faith.

This literature also provides insights as to how demon-
strators can best model behavior. Researchers have explored
what leads people to imitate (Hilbrink et al. 2013). Brugger
et al. (2007) showed that infants only copied causal action
sequences, where the first action is causally necessary for
the following action, ignoring adjacent, non-causal, unnec-
essary actions. Buttelmann et al. (2017) showed that imi-
tators use intentionality to infer causal actions, and results
show that intentional actions with markers like “there” and
“here” are assumed to be purposive to understand causality.

Informed by the above insights from the observational
learning literature, we have studied how a robot could com-
municate missing causal information in a versatile mobile
manipulation task to convey its action intent. In that work,

we considered a robot’s need to explain previous actions
in an environment that has changed since its actions were
taken, with some objects had been replaced (Han and Yanco,
under review), i.e., (1) where the robot grasped a misrecog-
nized object, (2) where a ground obstacle led to a detour, and
(3) where an object was placed into a wrong caddy section.
In these scenarios, the robot cannot communicate the causes
directly as it is not aware of perception failures.

We experimented with verbal and/or projection indicators
with or without a replay of a robot’s past physical actions.
These indicators were inspired by the deictic indicators used
to signal purposive intent as described above (Buttelmann
et al. 2017). In the action sequence for the three subtasks, the
robot selectively communicated causal actions that would
lead to environment changes immediately after the actions.

Three verbal deictic expressions are spoken immediately
before causal actions. To communicate where the misrecog-
nized object was, the robot said: “Ok. I picked up a gearbox
bottom from here,” while its gripper was over the object and
before lowering its gripper to grasp. For the detour, it said:
“Ok. I didn’t go straight to the caddy table because there
was something on the floor in front of me on my left,” be-
fore starting to drive itself. To inform where it placed, it said:
“Ok. I placed the gearbox bottom into the near right section
of the caddy,” while its gripper was over the section of the
caddy and before lowering and opening its gripper to release.

Leveraging the insights above from SCLT, “Ok” was used
to draw attention; robot speech was selected to convey key,
memorable episodes, to improve retention of the robot’s
actions and communications in humans’ memory. More-
over, robot speech concerned high-level behaviors regard-
ing nearby objects, rather than uninterpretable internal state
information. Speech was timed to avoid talking during non-
human-like arm movements that would be hard to reproduce
even imaginarily.

Further inspired by the use of deictic language to con-
vey purposive intent, we also implemented three projec-
tion markers to indicate causality, similar to Williams et al.
(2019a)’s Mixed Reality Deictic Gestures (cf. (Williams
et al. 2018, 2019b; Hamilton, Tran, and Williams 2020)).

To evaluate our approach, we asked participants whether
they inferred each missing causal information, confidence in
their inferences, and how fast are their inferences. While re-
sults showed that combining physical replay with verbal and
projection indicators best helped participants make these in-
ferences, verbal deictic expressions alone best enabled users
to infer robots’ previous placement actions, while mixed re-
ality deictic gestures (arrow projection markers) alone best
enabled users to infer previous environmental state.

3 Conclusion
We applied observational learning insights to robot com-
munication, and described our efforts toward observational
learning informed explanation of missing causal information
about a robot’s past behaviors. This draws attention to under-
explored dimensions of robot communication and explana-
tion (cp.(Han, Phillips, and Yanco 2021; Hellström 2021)).
Each subprocess of social cognitive learning theory repre-
sent a valuable direction for future work.
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