
Mixed-Reality Robot Behavior Replay: A System Implementation

Zhao Han,1* Tom Williams,1 Holly A. Yanco2

1MIRRORLab, Department of Computer Science, Colorado School of Mines, 1500 Illinois St., Golden, CO, USA 80401
2HRI Lab, Department of Computer Science, University of Massachusetts Lowell, 1 University Ave., Lowell, MA, USA 01854

zhaohan@mines.edu, twilliams@mines.edu, holly@cs.uml.edu,

Abstract
As robots become increasingly complex, they must explain
their behaviors to gain trust and acceptance. However, it may
be difficult through verbal explanation alone to fully convey
information about past behavior, especially regarding objects
no longer present due to robots’ or humans’ actions. Humans
often try to physically mimic past movements to accompany
verbal explanations. Inspired by this human-human interac-
tion, we describe the technical implementation of a system
for past behavior replay for robots in this tool paper. Specifi-
cally, we used Behavior Trees to encode and separate robot
behaviors, and schemaless MongoDB to structurally store
and query the underlying sensor data and joint control mes-
sages for future replay. Our approach generalizes to different
types of replays, including both manipulation and navigation
replay, and visual (i.e., augmented reality (AR)) and auditory
replay. Additionally, we briefly summarize a user study to fur-
ther provide empirical evidence of its effectiveness and effi-
ciency. Sample code and instructions are available on GitHub
at https://github.com/umhan35/robot-behavior-replay.

1 Introduction
Robots used in domains like collaborative manufacturing,
warehousing, and assistive living stand to have benefits such
as improving productivity, reducing work-related injuries,
and increasing the standard of living. Yet the increasingly
complexity of the manipulation and navigation tasks needed
in these domains can be difficult for users to understand,
especially when users need to ascertain the reasons behind
robot failures. As such, there is a surge of interest in im-
proving robot understandability by enabling them to ex-
plain themselves, e.g., through function annotation (Hayes
and Shah 2017), encoder-decoder deep learning framework
(Amir, Doshi-Velez, and Sarne 2018), interpretable task
representation (Han et al. 2021), and software architecture
(Stange et al. 2022). Different dimensions of robot expla-
nations have also been explored, such as proactive explana-
tions (Zhu and Williams 2020), preferred explanations (Han,
Phillips, and Yanco 2021), and undesired behaviors (Stange
and Kopp 2020). However, these works focused on explain-
ing a robot’s current behaviors.

*Most of this work was completed while Zhao Han was affili-
ated with the University of Massachusetts Lowell.
Presented at the AI-HRI Symposium at AAAI Fall Symposium Se-
ries (FSS) 2022

Figure 1: Manipulation replay using the replay technique
described in this paper. The robot’s arm movement and the
green projection (bottom) to indicate the object to be grasped
were being replayed to clarify a perception failure: A torn-
up wood chip was unknowingly misrecognized as one of the
gearbox bottoms. Key frames from the same replay and two
other types of replays are illustrated in Figure 2–4.

One challenge within this space is enabling robots to
explain their past behavior after their environment has
changed. This is an interesting yet challenging problem be-
cause objects present in the past might have already been
replaced or removed from the scene, making the task of re-
ferring to those objects during explanation particularly chal-
lenging (see also Han, Rygina, and Williams 2022). More-
over, a robot may not be capable of reasoning and explaining
its past behaviors due to unawareness of failures (see Figure
2 and 4), and limited semantic reasoning about objects like
ground obstacles or tabletop objects (see also Figure 3).

To help explain a robot’s past behaviors, we describe in
this tool paper the implementation of a mixed-reality robot
behavior replay system that builds on previous work on Visu-
alization Robots Virtual Design Elements (VDEs) (Walker
et al. 2022). While previous VDEs in this category have
primarily sought to visualize future robot behaviors (Rosen
et al. 2019), we instead use this technique to visualize previ-
ously executed behaviors. The robot behaviors that our tech-
nique is capable of replaying generalize to replay of both
manipulation and navigation behaviors. (See Figure 2–4).
Our replay technique can also handle replay of non-physical
cues: verbalization, e.g., sound and speech and visualiza-
tion, such as projector-based augmented reality (Han et al.
2020b, 2022). Empirical evidence of the effectiveness and
efficiency of our approach in explaining past behavior has



Figure 2: Manipulation replay of picking a misrecognized object: Start, perceive, reach above, pick, reset. Both arm move-
ment and AR visualizations are replayed. The rectangular green area (bottom) shows the grasped object. White area, projected
onto the two gearbox bottoms, shows correctly recognized objects. (Video: https://youtu.be/pj7-LqEsb94)

Figure 3: Navigation replay of a detour path: Start, rotate, detour, reach position, reach orientation. Both wheel movement and
AR visualizations were replayed. Yellow area (spheres of laser scan points; bottom middle) were projected to show ground ob-
stacle, and purple arrows (path poses; bottom) are projected to show past detour path. (Video: https://youtu.be/hV6jsA42YYY)

been presented in our previous work (Han and Yanco Under
review). While beyond the scope of this tool paper, we will
briefly mention the experimental results in Section 4.

We demonstrate our technique on a mobile manipula-
tor Fetch robot (Wise et al. 2016) using the widely-used
Robot Operating System (ROS) (Quigley et al. 2009), with
the robot behavior encoded in hierarchical behavior trees
(Colledanchise and Ögren 2018). Our use of ROS means
that our implementation is more-or-less platform agnostic,
as most current robots used in research and development
have ROS support (OpenRobotics 2022) or bridges (Scheutz
et al. 2019).

This work is beneficial to both manipulation and naviga-
tion researchers. In addition, our replay technique is helpful
for visual debugging for robot developers (Ikeda and Szafir
2022), and for explaining past behaviors to non-expert users.

2 Related Work:
Choosing Underlying Technologies

2.1 Robot Data Storage
To replay robot behavior, the first step is to store robot data.
One popular tool is rosbag1, which uses filesystems (bag
files) to store and play ROS messages. Despite being persis-
tent on disks, relying on filesystems, compared to databases
that we will discuss soon, made it challenging to query spe-
cific behaviors for replaying purposes, because related data

1https://wiki.ros.org/rosbag

in different bag files are unstructured and unlinked, requiring
writing custom code and logic.

Thus, roboticists have been exploring database tech-
nologies. The schemaless MongoDB database is a popular
and justified choice among many researches, e.g., Beetz,
Mösenlechner, and Tenorth (2010); Niemueller, Lakemeyer,
and Srinivasa (2012); Beetz, Tenorth, and Winkler (2015), to
store data from sensors or communication messages. Being
schemaless allows storing different data types without creat-
ing different data structures for different data messages, such
as tables in relational Structured Query Language (SQL)
databases, e.g., MySQL. In addition to the large number of
different robotics data messages, they are often hierarchi-
cal/nested and commonly seen in ROS messages, such as the
PoseStamped message in the geometry msgs package2. The
hierarchical PoseStamped message contains a Header mes-
sage to include a reference coordinate frame and a times-
tamp, and a Pose message to include a hierarchical Point
message for position information and a Quaternion message
for orientation information. It is imaginably tedious to cre-
ate all these tables for nested data messages one by one. The
advantage of schemaless database is also known as minimal
configuration, allowing evolving data structures to support
innovation and development (Niemueller, Lakemeyer, and
Srinivasa 2012). In this work, we used the mongodb log li-
brary, open-sourced by Niemueller, Lakemeyer, and Srini-
vasa (2012), with slight modifications to synchronize timing
of different timestamped ROS messages for replay.

2https://wiki.ros.org/geometry msgs



Figure 4: Manipulation replay of placing (a gearbox bottom) into a wrong caddy section (the left large section is the correct
one): Start, perceive, reach above, place, release, reset. Both arm movement and an AR visualization were replayed. A white
cube was projected into the blue caddy’s top-right section to show the misrecognized. (Video: https://youtu.be/kIJjU2FR4XU)

2.2 Robot Behavior Representation
With a justified choice to use the schemaless MongoDB for
robotic data, we then decide how to represent robot behav-
iors and store related data tied to specific behaviors. A num-
ber of methods have been used in prior work to represent se-
quences of robot actions (Nakawala et al. 2018), including
ontologies, state machines, Petri Nets, and behavior trees.

Ontology belongs to the knowledge representation fam-
ily. Ontologies can be used to infer task specifications from
high-level, abstract, underspecified input in a predefined
set of actions. Popular implementation include KnowRob
(Tenorth and Beetz 2009; Beetz et al. 2018) and CRAM
(Beetz, Mösenlechner, and Tenorth 2010). Yet, this approach
typically focuses on specification of high-level tasks rather
than low-level motion primitives.

Finite state machines (FSM) are a well-established
method for modeling computation (Schneider 1990) and
have been used for robot task specification and execution,
such as the SMACH (State MACHine) library (Bohren and
Cousins 2010) and hierarchical RAFCON (Brunner et al.
2016). Although FSM is very flexible at describing task
workflow and well-validated, a workflow in FSM can have
a significant number of states with intertwined dependen-
cies through transitions, making it hard to maintain, scale
and reuse (Colledanchise and Ögren 2018). Particularly for
robot behavior replay, it is challenging to clearly separate
different robot behaviors.

Petri Nets were created to model concurrency and dis-
tributed execution and coordination, which can be seen in
multi-robot systems (Ziparo et al. 2008) and soccer robot
(Palamara et al. 2008). Although useful, we are more inter-
ested in sequential actions and thus leave parallel behavior
replay to future work.

Finally, behavior trees (BTs) use tree structures to encap-
sulate behaviors in different kind of parent control nodes
with child execution nodes (Colledanchise and Ögren 2018).
BTs are commonly used to model AI agents in games
(Lim, Baumgarten, and Colton 2010; Sagredo-Olivenza
et al. 2017) and recently have been gaining momentum in
robotics, e.g., end-user programming (Paxton et al. 2017),
industrial robots (RethinkRobotics 2022), learning from
demonstration (French et al. 2019), and navigation (Macen-
ski et al. 2020). Compared to the aforementioned three robot

Database Robot Behavior 
Tree

MongoDB 
Daemon

Start to 
Record

Behavior B

QueryRecord Stop 
Recording

Recording Behaviors
for Replay

Wrapper

MongoDB
ROS Driver

Store ROS Messages of 
Relevant Topics

Replay A Thread for Each ROS Topic → Sync. Time → Robot

Figure 5: A high-level diagram for our robot behavior re-
play implementation. Robot behaviors are encoded in be-
havior trees. After Behavior B is identified for future replay,
a wrapper is used to record relevant ROS topic to MongoDB
through a MongoDB ROS driver. After querying a specific
behavior, multiple threads are created for all relevant ROS
topics, replaying them after replay time is synchronized.

action sequence methods, we choose BTs because they are
particularly well suited to represent atomic and separable
behaviors as subtrees with control nodes for replay. For a
gentle introduction to behavior trees and in a mobile manip-
ulation task, please see our prior work (Han et al. 2021).

3 Behavior Replay Implementation in ROS
3.1 High-Level Workflow
As this is a tool paper, now we go through each step in the
replay implementation in ROS. Figure 5 illustrates them.

First, MongoDB and its ROS driver (See http://wiki.ros.
org/mongodb store) need to be installed and running.

Second, the robot behaviors should be encoded
in behavior trees. Specifically, we have used the
BehaviorTree.CPP framework3. Our sample code
shows how behavior nodes are registered and then specified
in an XML behavior tree file. In theory, any task specifica-
tion should work because only the underlying ROS topics
are stored in MongoDB database. However, we recommend
specifying robot tasks in a behavior tree to have atomic and
separable behaviors. With the behavior tree representation,

3https://www.behaviortree.dev/



it removes the burden to separate specific behaviors for
replay and it is easy to wrap the control node, representing
a behavior, to record concerned ROS topics for replay.

Third, the specific behavior represented by the control
parent node should be identified for replay.

Fourth, before and after a control parent node is executed,
code for starting and stopping recording, i.e., storing related
topics, should be added. This is also called wrapper code
and is done through the MongodbLogger class: After ini-
tializing an MongodbLogger instance, specific topics for
future replay can be set. A number of them will be discussed
in the next subsection.

Finally, to query the recorded topics from MongoDB
database, one could simply replay the whole collection
(analogous to a table in SQL databases) or query by time
or topics. Under the hood, a thread is first created for the
replay of every ROS topic after they are retrieved, and after
a common clock is established, different ROS messages are
replayed at the right timestamp to replicate the movements
or visualizations that happened at record time. The code for
querying and replaying is in mongodb play.py.

3.2 Concrete Examples
We used the implementation to replay a complex mobile ma-
nipulation (kitting) task (Han et al. 2020a), including pick-
ing, navigation, and placement. As shown in Figure 2, a
Fetch robot successfully replayed its past arm movement
and manipulation of a misrecognized object. An AR visu-
alization, the green projection, was also replayed to indicate
the grasped object in the past. In Figure 3, the robot replayed
its past navigation behavior around an obstacle, with yellow
projection for the obstacle and arrows for the detour path. As
another manipulation example (Figure 4), Fetch replayed its
object placement arm movement with AR projection onto
the section of caddy that was misrecognized.

Here, we list the topics we have identified and recorded,
with the Fetch robot in mind. Although different robots use
different topics, it is particularly easy to find corresponding
topics. For body (arm and wheel) movement, the following
topics were replayed:
• Gripper: “/gripper controller/gripper action/goal”
• Arm and torso: “/arm with torso controller/follow joint

trajectory/goal”
• Torso: “/torso controller/follow joint trajectory/goal”
• Head: “/head controller/point head/goal”
• Head: “/head controller/follow joint trajectory/goal”
• Wheel movement: “/cmd vel”

Indeed, any topics can be replayed. For example, the
green projection in Figure 2 and the yellow projection (Fig-
ure 3) to indicate ground obstacle is a PointCloud2 message
in the sensor msgs package4. The arrow in Figure 3 is a Path
message from the nav msgs package5. The white projection
for the caddy section is a Marker message provided by the
rviz package6. In addition to visuals, non-visual messages
can also be replayed. For example, we have been able to

4https://wiki.ros.org/sensor msgs
5https://wiki.ros.org/nav msgs
6https://wiki.ros.org/rviz/DisplayTypes/Marker

replay speech by replaying messages from “/robotsound”,
used by the sound play package7.

4 Evaluation
We have also validated the effectiveness and efficiency of
robot behavior replay for past behavior explanation using
our implementation in the scenarios described in Figure 2–
4. In an experiment (N=665) we reported in detail in an-
other paper (Han and Yanco Under review), we assessed a
combination of different replays: Physical replay, AR pro-
jection replay, and speech replay. The combination of these
three modalities has achieved the best overall effectiveness,
helping participants infer where the robot grasped the mis-
recognized object (Manipulation inference; Figure 2), why
the robot made a detour (Navigation inference; Figure 3),
and which section of the caddy it wrongly placed an object
into (Placement inference; Figure 4). For efficiency, 60% of
the participants were able to infer the detour reason with
AR projection replay only. Speech replay alone helped par-
ticipants to quickly make inference on the caddy section.
For manipulation inference, although more participants can
quickly make the inference with projection or speech reply,
more participants also reported they were not able to get the
answer from such replays. While physical replay is time-
consuming, it ensured inference accuracy. Trust and work-
load were also rated by participants, but there were no con-
clusive findings. More details about this experiment can be
found in (Han and Yanco Under review).

5 Limitations
Although we were able to implement both manipulation and
navigation replays, the navigation replay has approximately
a few centimeter error when reaching the destination posi-
tion in the case of Figure 3. Although this may seem short,
it could be problematic where a following dependent behav-
ior, e.g., the placement replay shown in Figure 4, will not
have the desired state, e.g., the gripper may not be above the
correct caddy section, as seen in the fourth photo in Figure
4. In such cases, we may solve this issue by recording inter-
mediate goals as how body movement was recorded, shown
in Section 3.2.

6 Conclusion
In this work, we presented an implementation of robot
behavior replay. We justified the choices of database for
robotic data storage and robot task representation for speci-
fying and separating robot behaviors. Figure 5 shows the re-
quired components and steps to replay robot behaviors. We
also discussed the wide applicability of this technique, i.e.,
capability to replay any kind of ROS messages.

Acknowledgments
This work has been supported in part by the Office of
Naval Research (N00014-18-1-2503) and the National Sci-
ence Foundation (IIS-1909864). We also thank Vittoria San-
toro and Jenna Parrillo for code help.

7https://wiki.ros.org/sound play



References
Amir, O.; Doshi-Velez, F.; and Sarne, D. 2018. Agent strat-
egy summarization. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems,
1203–1207.
Beetz, M.; Beßler, D.; Haidu, A.; Pomarlan, M.; Bozcuoğlu,
A. K.; and Bartels, G. 2018. Know rob 2.0—a 2nd genera-
tion knowledge processing framework for cognition-enabled
robotic agents. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), 512–519. IEEE.
Beetz, M.; Mösenlechner, L.; and Tenorth, M. 2010.
CRAM—A Cognitive Robot Abstract Machine for everyday
manipulation in human environments. In 2010 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems,
1012–1017. IEEE.
Beetz, M.; Tenorth, M.; and Winkler, J. 2015. Open-EASE–
a knowledge processing service for robots and robotics/AI
researchers. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), 1983–1990. IEEE.
Bohren, J.; and Cousins, S. 2010. The smach high-level ex-
ecutive. IEEE Robotics & Automation Magazine, 17(4): 18–
20.
Brunner, S. G.; Steinmetz, F.; Belder, R.; and Dömel, A.
2016. RAFCON: A graphical tool for engineering com-
plex, robotic tasks. In 2016 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 3283–3290.
IEEE.
Colledanchise, M.; and Ögren, P. 2018. Behavior trees in
robotics and AI: An introduction. CRC Press.
French, K.; Wu, S.; Pan, T.; Zhou, Z.; and Jenkins, O. C.
2019. Learning behavior trees from demonstration. In
2019 International Conference on Robotics and Automation
(ICRA), 7791–7797. IEEE.
Han, Z.; Allspaw, J.; LeMasurier, G.; Parrillo, J.; Giger, D.;
Ahmadzadeh, S. R.; and Yanco, H. A. 2020a. Towards mo-
bile multi-task manipulation in a confined and integrated
environment with irregular objects. In 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
11025–11031. IEEE.
Han, Z.; Giger, D.; Allspaw, J.; Lee, M. S.; Admoni, H.; and
Yanco, H. A. 2021. Building the foundation of robot expla-
nation generation using behavior trees. ACM Transactions
on Human-Robot Interaction (THRI), 10(3): 1–31.
Han, Z.; Parrillo, J.; Wilkinson, A.; Yanco, H. A.; and
Williams, T. 2022. Projecting Robot Navigation Paths:
Hardware and Software for Projected AR. In Proceedings of
the 2022 ACM/IEEE International Conference on Human-
Robot Interaction, 623–628.
Han, Z.; Phillips, E.; and Yanco, H. A. 2021. The need for
verbal robot explanations and how people would like a robot
to explain itself. ACM Transactions on Human-Robot Inter-
action (THRI), 10(4): 1–42.
Han, Z.; Rygina, P.; and Williams, T. 2022. Evaluating Re-
ferring Form Selection Models in Partially-Known Environ-
ments. In Proceedings of the 15th International Natural
Language Generation Conference.

Han, Z.; Wilkinson, A.; Parrillo, J.; Allspaw, J.; and Yanco,
H. A. 2020b. Projection mapping implementation: Enabling
direct externalization of perception results and action intent
to improve robot explainability. In Proceedings of the AI-
HRI Symposium at AAAI-FSS 2020.
Han, Z.; and Yanco, H. A. Under review. Communicating
Missing Causal Information to Explain a Robot’s Past Be-
havior. Under review.
Hayes, B.; and Shah, J. A. 2017. Improving robot controller
transparency through autonomous policy explanation. In
2017 12th ACM/IEEE International Conference on Human-
Robot Interaction (HRI, 303–312. IEEE.
Ikeda, B.; and Szafir, D. 2022. Advancing the Design of
Visual Debugging Tools for Roboticists. In Proceedings of
the 2022 ACM/IEEE International Conference on Human-
Robot Interaction, 195–204.
Lim, C.-U.; Baumgarten, R.; and Colton, S. 2010. Evolving
behaviour trees for the commercial game DEFCON. In Eu-
ropean conference on the applications of evolutionary com-
putation, 100–110. Springer.
Macenski, S.; Martı́n, F.; White, R.; and Clavero, J. G. 2020.
The marathon 2: A navigation system. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 2718–2725. IEEE.
Nakawala, H.; Goncalves, P. J.; Fiorini, P.; Ferringo, G.; and
De Momi, E. 2018. Approaches for action sequence repre-
sentation in robotics: A review. In 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
5666–5671. IEEE.
Niemueller, T.; Lakemeyer, G.; and Srinivasa, S. S. 2012.
A generic robot database and its application in fault analy-
sis and performance evaluation. In 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 364–
369. IEEE.
OpenRobotics. 2022. Official ROS robot showcase. https:
//robots.ros.org. Accessed: 2022-07-13.
Palamara, P.; Ziparo, V.; Iocchi, L.; Nardi, D.; Lima, P.; and
Costelha, H. 2008. A robotic soccer passing task using petri
net plans (demo paper). In Proc. of 7th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2008),
1711–1712.
Paxton, C.; Hundt, A.; Jonathan, F.; Guerin, K.; and Hager,
G. D. 2017. CoSTAR: Instructing collaborative robots with
behavior trees and vision. In 2017 IEEE international con-
ference on robotics and automation (ICRA), 564–571. IEEE.
Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.;
Leibs, J.; Wheeler, R.; Ng, A. Y.; et al. 2009. ROS: an open-
source Robot Operating System. In ICRA workshop on open
source software, volume 3, 5.
RethinkRobotics. 2022. Intera Software Platform for Indus-
trial Automation. https://www.rethinkrobotics.com/intera.
Accessed: 2022-07-26.
Rosen, E.; Whitney, D.; Phillips, E.; Chien, G.; Tompkin, J.;
Konidaris, G.; and Tellex, S. 2019. Communicating and con-
trolling robot arm motion intent through mixed-reality head-
mounted displays. The International Journal of Robotics
Research, 38(12-13): 1513–1526.



Sagredo-Olivenza, I.; Gómez-Martı́n, P. P.; Gómez-Martı́n,
M. A.; and González-Calero, P. A. 2017. Trained behav-
ior trees: Programming by demonstration to support ai game
designers. IEEE Transactions on Games, 11(1): 5–14.
Scheutz, M.; Williams, T.; Krause, E.; Oosterveld, B.;
Sarathy, V.; and Frasca, T. 2019. An overview of the dis-
tributed integrated cognition affect and reflection diarc ar-
chitecture. Cognitive architectures, 165–193.
Schneider, F. B. 1990. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM Comput-
ing Surveys (CSUR), 22(4): 299–319.
Stange, S.; Hassan, T.; Schröder, F.; Konkol, J.; and Kopp,
S. 2022. Self-Explaining Social Robots: An Explainable
Behavior Generation Architecture for Human-Robot Inter-
action. Frontiers in Artificial Intelligence, 87.
Stange, S.; and Kopp, S. 2020. Effects of a social robot’s
self-explanations on how humans understand and evaluate
its behavior. In 2020 15th ACM/IEEE International Confer-
ence on Human-Robot Interaction (HRI), 619–627. IEEE.
Tenorth, M.; and Beetz, M. 2009. KnowRob—knowledge
processing for autonomous personal robots. In 2009
IEEE/RSJ international conference on intelligent robots and
systems, 4261–4266. IEEE.
Walker, M.; Phung, T.; Chakraborti, T.; Williams, T.; and
Szafir, D. 2022. Virtual, augmented, and mixed reality for
human-robot interaction: A survey and virtual design ele-
ment taxonomy. arXiv preprint arXiv:2202.11249.
Wise, M.; Ferguson, M.; King, D.; Diehr, E.; and Dymesich,
D. 2016. Fetch and freight: Standard platforms for service
robot applications. In Workshop on autonomous mobile ser-
vice robots.
Zhu, L.; and Williams, T. 2020. Effects of proactive ex-
planations by robots on human-robot trust. In International
Conference on Social Robotics, 85–95. Springer.
Ziparo, V. A.; Iocchi, L.; Nardi, D.; Palamara, P. F.; and
Costelha, H. 2008. Petri net plans: a formal model for rep-
resentation and execution of multi-robot plans. In Proceed-
ings of the 7th international joint conference on Autonomous
agents and multiagent systems-Volume 1, 79–86.


