Evaluating Cognitive Status-Informed **Referring Form Selection** for Human-Robot Interactions

MIRRORLab, Department of Computer Science, Colorado School of Mines, USA

Zhao Han (he/him)

How does a cognitive-status informed referring form selection (RFS) model perform in live collaborative HRI tasks?

- Instead of offline, automatic metrics like accuracy, we conducted **a** human-subjects study to evaluate the RFS model.
 - Random referring forms vs. **indefinite noun phrases** ({size} {color} {shape}) vs. model
- The RFS model **outperformed the** random baseline in task performance,

Follow: 🎽 @hanzhao

Visit: zhaohanphd.com

Contact: zhaohan@mines.edu

naturalness, understandability, and mental workload.

• But the model is **not better than the** use of indefinite noun phrases.

MRROALD AD Mines Interactive Robotics Research

Follow: 🔰 @MIRRORLab

Visit: mirrorlab.mines.edu

Contact: twilliams@mines.edu

What did participants do?

Participants followed the robot's instructions to perform three building construction tasks.

Cognitive status-informed RFS

Givenness Hierarchy theory: Referring forms \rightarrow hierarchy of cognitive statuses of objects in mind of interlocutors

Level	Cognitive Status	Form
In focus	in focus of attention	it
Activated	in working memory	this, that, this N
Familiar	in LTM	that N
Uniquely id-able	in LTM or new	$the \mathrm{N}$
Referential	new	indef. this N
Type id-able	new or hypothetical	a N

RFS model also uses situated features like physical/temporal distance.

Follow: Set Mines

Visit: cs.mines.edu

This work was funded in part by:

Takeaways and Future Work

- Cognitive status-informed RFS models have a long way to go in terms of performance in live human-robot interactions.
- This does not suggest using indefinite noun phrases. Instead, this is evidence for improvement of cognitive status-informed RFS models.
- In the future, one should include multimodal features like gestures.
- This work reminds us of the nuances of language and the fragility of interactions with our new robotic teammates: even a single overly ambiguous pronoun may be enough to derail the overall interaction.