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Abstract— Robots that use natural language in collaborative
tasks must refer to objects in their environment. Recent
work has shown the utility of the linguistic theory of the
Givenness Hierarchy (GH) in generating appropriate referring
forms. But before referring expression generation, collaborative
robots must determine the content and structure of a sequence
of utterances, a task known as document planning in the
natural language generation community. This problem presents
additional challenges for robots in situated contexts, where
described objects change both physically and in the minds
of their interlocutors. In this work, we consider how robots
can “think ahead” about the objects they must refer to and
how to refer to them, sequencing object references to form a
coherent, easy to follow chain. Specifically, we leverage GH
to enable robots to plan their utterances in a way that keeps
objects at a high cognitive status, which enables use of concise,
anaphoric referring forms. We encode these linguistic insights as
a mixed integer program within a planning context, formulating
constraints to concisely and efficiently capture GH-theoretic
cognitive properties. We demonstrate that this GH-informed
planner generates sequences of utterances with high inter-
sentential coherence, which we argue should enable substantially
more efficient and natural human-robot dialogue.

I. INTRODUCTION

Robots in domains ranging from collaborative manufac-
turing to intelligent tutoring will need to use sequences of
utterances to teach or otherwise provide information to human
interlocutors. In collaborative manufacturing, for example, a
robot may need to instruct a worker as to how to perform a
complex task over several steps. In these types of domains,
there is often substantial flexibility in the set of instructions
that the robot can convey, and the order in which instructions
are given. In a manufacturing task, for example, a robot may
need to describe a set of multi-step procedures that can be
executed in any order; the robot could in this case begin by
describing the first step of each procedure, or could describe
each subtask as a whole before moving on to the next subtask.

In the natural language generation (NLG) community,
this task of determining the overall content and structure
of generated language is referred to as document planning.
As the name suggests, however, most previous approaches
to document planning are designed for non-situated, purely
textual domains. Situated dialogues, in contrast, require
speakers to take into account their interlocutors’ cognitive
context. Specifically, speakers must generate utterances in
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a way that leverages the cognitive status of information for
their listeners—e.g., referring to an object as “it” rather
than “the N” if their interlocutor is already focused on the
object. Speakers need to take into account changes in this
cognitive context on the basis of their own utterances, or on
the basis of interjections, questions, and non-verbal behaviors
by their interlocutor. And, as we argue in this paper, they
thus need to be able to perform document planning in a way
that is sensitive to these dynamics, generating sequences of
references that allow for meaningful inter-sentential coherence
and the use of a wide variety of referring forms, to facilitate
compact, easily followable utterance sequences.

To facilitate these capabilities, robots must thus maintain
not only mental representations of the objects comprising
their shared collaborative context, but must moreover maintain
information about the cognitive status of those objects, for
use in referring form selection and document planning.
Approaches toward this goal can be grounded in conceptions
of cognitive status from the linguistic literature, such as the
Givenness Hierarchy (GH) [1]. According to this theory,
when humans use anaphora (“it,” “that”, etc.) rather than
only definite descriptions (e.g., “the blue box”), they signal
subconscious assumptions about the cognitive status held by
their target referent, either in the mind of their interlocutor
or in the (metaphorical) mind of the conversation. This
theory has been highly successful in the linguistics literature,
validated across many disparate natural languages [2].

GH-based approaches have also seen significant success in
the robotics community. Williams et al. [3] demonstrated how
this approach can be used to facilitate the understanding of a
wide variety of referring forms (see also the chapter on this
topic in the Oxford Handbook of Reference [4]); and more
recently, Pal et al. [5], [6] demonstrated how cognitive status
can be estimated across the course of a conversation and used
to guide the selection of referring forms. We argue that this
theory could also be leveraged to enable advances in other
stages of a robot’s language generation process. Specifically,
we argue that this theory could enable effective new robot
document planning capabilities that are fundamentally well-
suited for situated human-robot interaction (HRI) domains,
thus enabling robots to generate sequences of utterances
that are sensitive to the cognitive status dynamics of their
interlocutors.

We present an NLG approach that incorporates the GH-
theoretic cognitive status of a robot’s human interlocutor to
generate optimal document plans. We show that cognitive
status can be encoded as constraints in mixed integer pro-
gramming (MIP), which we integrate into a MIP formulation



of classical planning. We also present an example objective
function that rewards high-cognitive-status referents. This
approach enables generation of document plans with high
inter-sentential coherence and facilitates effective use of
anaphora over definite descriptions (e.g., “it” over “the N”).
The presented system offers a proof-of-concept for the use of
cognitive status as state variables in planning and optimization
approaches for NLG.

We evaluate our work on a manipulation task in a human-
robot collaborative tasking scenario, and show how sequences
of instructions are generated by our approach in that domain.
We first encode this scenario in the Planning Domain
Definition Language (PDDL) [7] with actions representing
possible instructional utterances. We then generate document
plans for the robot’s instructions to the human using both a
classical planner and our GH-aware planner, showing that our
formulation does enable the use of more concise referring
forms.

We argue that such referring form usage should improve
inter-sentential coherence in a complete NLG pipeline, and ul-
timately improve efficiency and usability in HRI applications.
In particular, the highest cognitive statuses allow for the use
of pronouns over definite noun phrases. There are numerous
benefits to using these forms [8], as they make dialogue
more efficient (and thus less costly to listen to) [9], more
predictable (and thus cognitively easier to follow and more
humanlike) [10], and conforming to Gricean conversational
maxims of cooperative speech [11]. Additionally, the impact
of these effects are magnified in situated contexts, in which
the use of these forms facilitates—and is facilitated by—the
use of deictic gesture to more effectively pick out objects at
(and based on) varying distances [12]. We hypothesize that
leveraging these benefits will improve task performance and
user satisfaction, similar to the advantages gained through
use of shorter object descriptions (Wallbridge et al. [13]).

Another potential benefit of our approach is in reducing
the cognitive workload (cf. [14]) of participants in human-
robot collaborative tasks. It is well established that human
performance is degraded when cognitive workload is too
high [15]. Human-like, context-dependent referring forms
have been shown to reduce workload [16], and high-cognitive-
status referents are conducive to the use of such forms.
Furthermore, high working memory load slows spoken-word
recognition time [17]. This strain on language processing
could be ameliorated by the shorter instructions generated by
our method.

Reduced cognitive workload, improved human performance
on tasks, and increased user satisfaction are highly desirable
traits for HRI applications. While this paper focuses on the
technical approach for GH-aware document planning, our
work thus suggests key HRI hypotheses to evaluate through
interaction studies in future work.

II. RELATED WORK

Our approach is fundamentally grounded in the linguistic
theory of the Givenness Hierarchy (GH) [1]. The GH is
comprised of a hierarchically nested set of six cognitive

statuses: {in focus ⊆ activated ⊆ familiar ⊆ uniquely
identifiable ⊆ referential ⊆ type identifiable}. Each status is
associated with one or more referring forms. For example,
an object that is in focus can be referred to with the pronoun
“it”. Furthermore, a speaker that uses the word “it” implicitly
signals a belief that the object is in focus in the mind of the
listener. The GH theory posits that these six cognitive statuses
are universal to human discourse, and has been validated
across multiple languages [2].

There is a growing body of work in using computational
models of the GH for NLG applications. Pal et al. [5] showed
that the GH can be used successfully for referring form
selection, building on the work of other researchers [18],
[19], [3], [4] who have implemented portions of the GH
(although not attempting to directly model cognitive status)
for the purposes of reference resolution.

In this work we focus on using GH for a key NLG task
not considered in prior work. Modular NLG pipelines [20]
typically include modules for sentence planning (deciding how
to communicate a sentiment), referring expression generation
(selecting properties to use to refer to referents), and linguistic
realization (ensuring grammatical correctness [21]). Above
all these components sits the module of greatest interest to
us, the document planner, which decides on an overarching
sequence of sentiments to communicate a larger point or
achieve a larger goal [22].

In this work, we seek to enable more effective document
planning by leveraging cognitive status estimation. Our key
insight is that document planning approaches that fail to
account for cognitive status may exhibit decreased inter-
sentential coherence. For instance, these approaches may
introduce more referents than is strictly needed (or repeatedly
re-introduce referents that are no longer activated), requiring
full definite descriptions rather than shorter anaphoric phrases.
In contrast, an approach that aims to use and continue
referring to task-relevant entities that are already in focus or
activated would lead to greater inter-sentential coherence,
shorter and easier-to-follow dialogues, and perhaps even
fundamentally simpler plans overall.

Towards this end, we propose to leverage the GH in
document planning. Our modeling of the GH is similar to Pal
et al.’s [5] Finite State Machine model, which they show to
accurately predict cognitive status of referents in a preexisting
monologue. We reproduce this model within planner state so
that it can inform content determination and text structuring.
We use these insights to guide the performance of a constraint-
based task planning algorithm [23], [24], to plan actions
that not only achieve desired goals, but also keep objects at
higher tiers of cognitive status when possible. Constraint-
based approaches for classical planning have typically used
formulations based on Boolean satisfiability (SAT) [25],
[26], [27]. We apply a formulation based on constrained
optimization, specifically, mixed integer programming (MIP),
to optimize based on cognitive status. The relationship be-
tween SAT and integer programs is long-established [28], and
integer programming has been used in efficient planners [29].
Additionally, MIP’s capabilities in real-valued optimization



makes our approach extensible to more complex models such
as Pal et al.’s [5] probabilistic Cognitive Status Filter.

Existing planning languages impact the expressivity and
capability of planning approaches [30] and do not easily
represent the structure of GH-theoretic cognitive status.
Instead, we incorporate cognitive status directly into the
MIP formulation. As we will show, our MIP formulation
succeeds in our goal of generating document plans with fewer
and higher-cognitive-status referents. Finally, formulating
document planning as MIP enables use of highly engineered
solution procedures [31], [32], [33].

III. PROBLEM FORMULATION

We propose a novel approach for situated document
planning that optimizes GH-theoretic cognitive status using
mixed integer programming.

We model the cognitive status for each object in the scene
according to the GH coding protocol [34]. Our approach
is designed to maximize use of linguistic forms associated
with higher cognitive statuses—i.e., closer to in focus in the
hierarchy.

A. Background on Constraint-based Planning

From a technical perspective, our approach is grounded in
constraint-based planning techniques. Planning is an estab-
lished technique for NLG. We briefly review the constraint-
based planning formulation and refer the reader to [21], [24],
[35] for more background.

Constraint-based planning: Classical approaches for
constraint-based planning encode a scenario as a logical
formula, then use a constraint solver—typically, a SAT
solver [25], [26]—to find a satisfying variable assignment for
that formula, corresponding to the plan [35, p69]. Variables
in the formula represent the state and the action to take for
a fixed number of steps. The formula itself describes valid
plans, and we describe such a formula in equations (1)–
(10). The planner progressively increases step count until
the formula is satisfiable. The true action variables in the
satisfying assignment encode the action to take for each step
of the plan.

Mixed Integer Programs and Planning: Mixed integer
programs (MIP) generalize SAT to include both real number
variables and an objective function to optimize. We formulate
situated document planning as MIP to enable optimal refer-
ence selection. While MIP is at least as hard as SAT [28],
MIP formulations critically let us leverage highly engineered
solution techniques [31], [32], [33].

We apply and extend the following formulation of planning
as MIP.

Definition 1 (MIP-based planning): A planning instance
is the tuple (P,A,O, I,G), where:

• P is the set of grounded predicates
• A is the set of grounded actions
• O is the set of objects
• I ⊆ P is the set of true predicates in the initial state
• G ⊆ P is the set of true predicates in the goal state

The MIP formula contains the following Boolean variables:

pt, ∀p ∈ P, t ∈ [0, T ]

at, ∀a ∈ A, t ∈ [1, T ]

where pt is true iff predicate p is true at time step t and at
is true iff action a is taken at time step t. Then, the MIP
contains the conjunction of the following constraints:

p0 = 1, ∀p ∈ I (1)
p0 = 0, ∀p /∈ I (2)
pT = 1, ∀p ∈ G (3)

at ≤ pt−1, ∀a ∈ A, p ∈ pre+(a), t ∈ [1, T ] (4)
at ≤ 1− pt−1, ∀a ∈ A, p ∈ pre−(a), t ∈ [1, T ] (5)

at ≤ pt, ∀a ∈ A, p ∈ eff+(a), t ∈ [1, T ] (6)

at ≤ 1− pt, ∀a ∈ A, p ∈ eff−(a), t ∈ [1, T ] (7)∑
a∈A

at ≤ 1, ∀t ∈ [1, T ] (8)

pt ≤ pt−1 +
∑

a∈add(p)

at, ∀p ∈ P, t ∈ [1, T ] (9)

pt ≥ pt−1 −
∑

a∈del(p)

at, ∀p ∈ P, t ∈ [1, T ] (10)

where pre+(a) and pre−(a) are the sets of positive and
negative preconditions of a, eff+(a) and eff−(a) are the sets
of positive and negative effects of a, and add(p) and del(p)
are the sets of actions with p as a positive/negative effect.
Conditions (1) and (2) encode the initial state, (3) encodes the
goal condition, (4) through (7) enforce consistency of action
preconditions and effects, (8) encodes operator exclusion,
and (9) and (10) are the frame axioms. Lastly, we define the
objective function,

min
at

∑
a∈A,t∈[1,T ]

at ,

which ensures we find the shortest valid plan.

B. Situated Document Planning

We consider a situated document planning problem where
the robot must describe an embodied task to a human.
Specifically, we generate the sequence of utterances describing
the task; surface realization to generate the linear text is
beyond the scope of this work, but established techniques [21]
are applicable. In the planning problem, predicates describe
the state of the situated world, and objects correspond
to the interactable physical objects in the interlocutor’s
situated context. The actions represent utterance skeletons that
instruct the interlocutor to manipulate physical objects. Action
parameters correspond to physical objects. For example,
the plan step (pick-up block-A) would correspond to an
instruction to pick up the item designated as block-A.

While not performed in this work, these forms could
easily be translated into the types of utterance represen-
tations typically used in cognitive robotic architectures like
DIARC [36]. Specifically, each plan step, when translated into
a predicate p (e.g. pick-up(block-A)) can be assumed to be



TABLE I: Classical Approach to Situated Document Planning
Instruction Example Planning Example
physical object block A object block-A
utterance skeleton “Pick up [ref].” action (pick-up ?o)
utterance “Pick up that

block”
grounded
action

(pick-up
block-A)

TABLE II: Cognitive Status Criteria
Cognitive Status Condition
In Focus (I) Topic of previous utterance
Activated (A) Referenced in previous two utterances
Familiar (F) Referenced in any previous utterance
Uniquely identifiable (U) Always

part of an utterance of form Inst(r, h, p), i.e. an Instruction
from the speaker (robot r) to the hearer h instructing them
to perform action p. However, this could be formulated in
other ways, based on pragmatic inference, to achieve various
communicative goals such as politeness [37].

In Section III-C, we extend the state space to include the
cognitive status of action parameters (i.e. referents). The initial
state of the planning problem corresponds to no instructions
having been given, and the goal state is that each step in the
manipulation task has been described. Table I summarizes
this formulation.

C. MIP Formulation of Cognitive Status

We present a formulation of MIP variables and constraints
to track the GH-theoretic cognitive status of each object in the
scene at each planning time step. In particular, we capture the
structure of GH-theoretic cognitive status to enable efficient
reasoning. Classical planning languages and techniques often
pose challenges for representing structure [30]. Instead, we
incorporate GH-theoretic structure directly into the MIP.

Our formulation uses a simplified version of the criteria
specified in the GH coding protocol [34], including only
what is applicable in the instruction-giving task described
in Section III-B. The exact criteria we use are shown in
Table II. Note that “topic” in the above table encompasses
the linguistically distinct terms subject, syntactic topic, and
syntactic focus. We leave the specification of an utterance’s
topic to the planning domain (see Section IV-A) so the
planning formulation is independent of these distinctions.
Additionally, we assume that every object is at least uniquely
identifiable, which forms the implicit default if none of the
above criteria are met. This assumption holds true in the
situated context of our sample problem: a workspace with
a collection of distinct objects. The presented formulation
can easily be extended to include the omitted statuses for
applications where they are applicable.

The key challenge lies in grounding actions that affect
cognitive status, i.e., converting from a first order to a
Boolean (or integer) representation. The size of the grounded
representation significantly impacts running time [24], [25],
[27]. A naı̈ve SAT-based encoding of cognitive status results in
a large number of constraints in the grounded representation.
The number of grounded actions is exponential in action arity:
a single action requires T |O|n grounded variables where T

is the number of time steps, O is the set of objects, and n is
the action’s arity. Typical planning problems have low-arity
actions that only affect a small number of objects. However,
GH-theoretic cognitive status is different: the cognitive status
of an object may change at each time step even if it is not
referred to at that time step. For example, if object A is in
focus, then an utterance referencing only object B is used, the
cognitive status of A changes to activated. Thus, accounting
for cognitive status requires each grounded action to update
a number of state variables proportional to the number of
objects, resulting in an additional O

(
T |O||O|) constraints

per action.
We address the challenge of concisely modeling cognitive

status updates with a formulation of MIP constraints that
capture GH-theoretic structure. Our formulation introduces
only a O (T |O|) new constraints, instead of the exponential
number of constraints required for a naı̈ve encoding. We
extend the formulation in Section III-A with the following
Boolean variables,

Io,t, Ao,t, Fo,t, ∀o ∈ O, t ∈ [0, T ] ,

where Io,t is true iff object o is in focus at time step t, Ao,t

is true iff object o is activated at time step t, and Fo,t is true
iff object o is familiar at time step t. Then, we introduce the
following constraints:

Io,t =
∑

topic(o)

at, ∀o ∈ O, t ∈ [1, T ] (11)

Ao,t ≤
∑

ref(o)

at + at−1, ∀o ∈ O, t ∈ [1, T ] (12)

Ao,t ≥
1

2

∑
ref(o)

at + at−1, ∀o ∈ O, [1, T ] (13)

Fo,t ≤ Fo,t−1 +
∑

ref(o)

at, ∀o ∈ O, t ∈ [1, T ] (14)

Fo,t ≥
1

2

Fo,t−1 +
∑

ref(o)

at

 , ∀o ∈ O, t ∈ [1, T ] (15)

Io,0, Ao,0, Fo,0 = 0, ∀o ∈ O (16)

where topic(o) is the set of actions with o as their topic
and ref(o) is the set of actions that reference o. Constraints
11 through 15 encode the cognitive status criteria, and 16
encodes the initial condition. Finally, we replace the objective
function with:

min
at

∑
t∈[1,T ]

∑
o∈O

∑
a∈ref(o)

at(8− 4Fo,t − 2Ao,t − Io,t) (17)

which encodes a cost for each object reference depending on
its cognitive status at the time of the reference. The costs are
shown in table Table III. As this work is meant to serve as a
proof-of-concept, we chose the simple rule that a reference at
any cognitive status is equivalent in cost to two references at
the next higher status. We leave the development of a more
informed objective function, which could be informed by
linguistic literature on, e.g., cost-of-comprehension or other
psycholinguistically relevant criteria [8], to future work.



TABLE III: Cognitive status costs
Status In Focus

(I)
Activated
(A)

Familiar
(F)

Uniquely Identifi-
able (U)

Cost 1 2 4 8

IV. EVALUATION

We evaluate our approach on a sample problem to identify
the impact of GH-theoretic cognitive status. We apply both
a classical formulation and our GH-theoretic optimizing
approach to construct MIPs, which we solve using the Gurobi
Optimizer [32]. We compare the resulting plans, which show
that GH-theoretic optimization does produce plans that use
higher cognitive status referents.

A. Sample Problem

We develop the sample problem gadgets (see Figure 1),
which involves generating instructions to assemble gadgets
from parts. This problem is similar to the tower construction
task used in Robotics [38], and has potential utility in key
HRI domains like collaborative manufacturing. However,
this gadgets problem is not meant to directly represent a
realistic scenario, but rather an example to compare the plans
generated by a classical planner and our optimizing planner.
In the gadgets domain, there are parts, tools, and boxes.
Items in boxes must be taken out before they can be used.
There are three types of tools: screwdrivers, wrenches, and
grippers. Certain parts can be attached to another part using a
screwdriver or using a wrench, and parts can be wired using
a gripping tool.

B. Results

For the gadgets problem given in Figure 1, the classical
encoding generated the plan in Table IV, and our GH-aware
encoding generated the plan in Table V.

The GH-aware plan makes several changes that result
in an increased use of high-cognitive-status referents, as
summarized below:

• Object reuse: The classical plan uses three separate tools,
while the optimized plan uses only the multi-tool. This
avoids the low-cognitive-status references required in
switching tools.

• Planning ahead for object reuse: In order to access the
multi-tool, the new planner must first take it out of the
box. This shows how the GH-aware planning approach
goes beyond greedily reusing objects.

• Accepting longer plans: The new planner gives a plan
that is longer than the classical plan, due to the step
of taking the multi-tool out. This demonstrates that our
system is able to handle a trade-off between brevity
and complexity. Note that the GH-aware plans are not
always longer, and that this trade-off can be tuned with
the objective function.

• Separating sub-tasks: The classical plan switches back
and forth between working on the motor gadget and the
chip gadget. The new planner completes work on one
before starting the other to keep objects at maximum
cognitive status.

Although this work focuses on the document planning level,
Table V middle shows possible surface realizations for each
step of the GH-aware plan from Table V left, using referring
forms informed by cognitive status as the most prominent
feature [6]. We include this natural language example to
facilitate comparison to the classical plan given in Table IV
and highlight the summarized changes.

Figure 2 shows the total references used in each plan by
cognitive status. The total costs of the classical and optimized
plans according to our objective function are 100 and 90
respectively.

We compare running times of our proof of concept
implementation for the classical and GH-aware encodings in
Table VI. The GH-aware encoding does increase running time
over the classical encoding. There are a number of potential
causes for the difference, including the quadratic objective
function of the GH-aware encoding and the existence of
many of plans that satisfy the goal conditions. The GH-aware
encoding must find not only a shortest, satisficing plan but
one that optimizes the objective function (17). In our sample
problem, the shortest, satisficing plan takes 7 steps while
the optimal plan takes 8 steps. There are several potential
refinements that would improve running time, including
object typing and parallel actions [24]. Further heuristics
to prune satisficing but nonoptimal solutions may also yield
improvements.

V. DISCUSSION AND FUTURE WORK

The plans generated by our GH-informed planner differ
substantially in structure from those generated with a classical
approach. These differences result in more references to high-
cognitive-status objects while still accomplishing the same
communicative goal. Since cognitive status is closely tied to
referring form choice [6], plans generated with our approach
will result in shorter language after text realization. The
language may sound more natural as well, since humans
tend to avoid forming complex referring expressions when
possible [39]. We believe our results demonstrate the utility
of the modeling cognitive status at the document planning
level. There has been recent interest in computational models
of cognitive status and GH-based referring form selection has
been demonstrated with good results [6]. However, previous
work has focused on tasks that fall under text realization.
Our results are a proof of concept of how document planning
can benefit from these works as well.

For this work, we considered only cognitive status; but how
speakers choose to refer to objects depends on a myriad of
other situational values that could also be modeled. Referring
form selection, for example, also depends on physical distance
and distractors [6]. These values could be derived from
planner state and combined with cognitive status to create a
more sophisticated objective function for the planner.

The use of the multi-tool in the sample problem suggests
another potential line of investigation. The planner uses the
tool so consistently that it remains activated from the first
time it is referenced to the end of the plan. In such a situation,
a human instructor would likely stop referring to it altogether,



(d e f i n e (domain gadgets)
(:p r e d i c a t e s (screwdriver ?o) (wrench ?o) (part ?o) (box ?o)

(gripper ?o) (out ?o) (in ?o ?b) (attached ?o1 ?o2)
(wired ?o) (screwable ?o) (boltable ?o))

(:a c t i o n take-out
:parameters (?topic ?b)
:p r e c o n d i t i o n (and (in ?topic ?b) (box ?b))
: e f f e c t (and (out ?topic) (not (in ?topic ?b))))

(:a c t i o n screw-in
:parameters (?topic ?p ?s)
:p r e c o n d i t i o n (and (out ?topic) (out ?p) (out ?s) (part ?topic)

(part ?p) (screwdriver ?s) (screwable ?topic))
: e f f e c t (and (attached ?topic ?p)))

(:a c t i o n bolt-in
:parameters (?topic ?p ?w)
:p r e c o n d i t i o n (and (out ?topic) (out ?p) (out ?w) (part ?topic)

(part ?p) (wrench ?w) (boltable ?topic))
: e f f e c t (and (attached ?topic ?p)))

(:a c t i o n wire
:parameters (?topic ?g)
:p r e c o n d i t i o n (and (out ?topic) (out ?g)

(part ?topic) (gripper ?g))
: e f f e c t (wired ?topic)))

(d e f i n e (problem assemble)
(:domain gadgets)
(: o b j e c t s toolbox partbox multitool allen

phillips motor axle gear board
chip led pliers)

(: i n i t (box toolbox) (box partbox) (part motor)
(part axle) (part gear) (part board)
(part chip) (part led) (gripper pliers)
(screwdriver phillips) (wrench allen)
(gripper multitool) (wrench multitool)
(screwdriver multitool) (screwable axle)
(screwable chip) (boltable gear)
(boltable led) (out allen) (out phillips)
(out motor) (out axle) (out board)
(out pliers) (out gear) (in chip partbox)
(in led partbox) (in multitool toolbox))

(:goa l (and (attached gear axle)
(attached axle motor)
(attached chip board)
(attached led board)
(wired board))))

Fig. 1: Gadgets domain and problem definitions in PDDL

TABLE IV: Classical Encoding Plan
Planner Output Possible Surface Realization Cognitive Status Costs
(take-out led partbox) “Take the LED out of the box of parts” 8 (U), 8 (U)
(take-out chip partbox) “Take the chip out of that” 8 (U), 2 (A)
(screw-in axle motor phillips) “Screw the axle into the motor with the phillips screwdriver” 8 (U), 8 (U), 8 (U)
(bolt-in gear axle allen) “Bolt the gear onto it with the allen wrench” 8 (U), 1 (I), 8 (U)
(screw-in chip board phillips) “Screw that chip into the breadboard with that” 4 (F), 8 (U), 2 (A)
(wire board pliers) “Wire that with the pliers” 2 (A), 8 (U)
(bolt-in led board allen) “Bolt that LED onto it with that allen wrench” 4 (F), 1 (I), 4 (F)

TABLE V: GH-aware Encoding Plan
Planner Output Possible Surface Realization Cognitive Status Costs
(take-out multitool toolbox) “Take the multi-tool out of the toolbox” 8 (U), 8 (U)
(screw-in axle motor multitool) “Screw the axle into the motor with it” 8 (U), 8 (U), 1 (I)
(bolt-in gear axle multitool) “Bolt the gear onto it with this tool” 8 (U), 1 (I), 2 (A)
(wire board multitool) “Wire the breadboard with that” 8 (U), 2 (A)
(take-out chip partbox) “Take the chip out of the box of parts” 8 (U), 8 (U)
(screw-in chip board multitool) “Screw it into this board with that” 1 (I), 2 (A), 2 (A)
(take-out led partbox) “Take the LED out of this box” 8 (U), 2 (A)
(bolt-in led board multitool) “Bolt it onto this board with that” 1 (I), 2 (A), 2 (A)

Fig. 2: References made by cognitive status

TABLE VI: Running Times
Classical encoding GH-aware Encoding

0.59 seconds 14.12 seconds

assuming that the instruction follower will continue using the
same tool if unspecified. This leads to the notion of leveraging
referential assumptions at the document planning level.

While this work focuses on the technical approach and
contribution, we plan to evaluate our work in a human-
subjects study with both objective and subjective measures.
Objective metrics include accuracy, whether a participant’s
resulting action reaches the desired goal state. Subjective
measures, to be administered after each utterance, focus on
the perceived understandability of the planner output; tentative
metrics include comprehensiveness, simplicity, and mental
workload (e.g., through NASA Task Load Index [40]). A
baseline approach with definite descriptions will be compared
with our approach where referring forms are used. We believe
our approach will have higher scores in these metrics.

Once the planner output is evaluated, we plan to add
gesturing capability and evaluate with a robot to understand
how the perception of a robot is affected. A physically
embodied robot presents further interesting challenges, such
as how the physical distance between participants, the robot,
and objects affect document planning.



VI. CONCLUSION

In this paper, we propose modeling GH-theoretic cognitive
status within document planning for situated human-robot
interaction. We present a proof of concept by encoding the
GH coding criteria in a MIP-based planner and demonstrate
the solution to a sample instruction-giving problem. Our MIP
encoding captures the structure of GH-theoretic cognitive
status to form a concise set of constraints. Our resulting
plans indicate the utility of our approach and motivate further
investigation in GH-aware, situated document planning.

Key areas for future research include human-subjects
studies on the generated language, extending the GH-theoretic
model, and experiments on physical robot platforms. This
work could serve as a framework for human-robot collabora-
tion systems that exhibit complex decision-making behavior
that maximizes human understanding of natural language
prompts and reduces human cognitive load.
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