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Abstract

During the last decade, robots have become increasingly ubiquitous. They have been moved out-

side of laboratories and deployed to environments where they have to interact with humans. Exam-

ples include public places such as warehouses, hotels, factories, retail stores, and streets, as well

as the most anticipated places – private homes. In these increasingly unstructured environments,

requirements for human-robot interaction and collaboration are more involved as the tasks that

robots complete are increasingly complex. For people to build trust with robots, there is a press-

ing need for robots to explain their actions and behaviors explicitly, rather than in implicit and

vague manners such as using eye gaze or arm movement. This dissertation centered around robot

explanations and examined four interconnected aspects of the robot explanation process: from

what explanations humans prefer, how to generate explanations, and how to communicate them

explicitly, to explaining missing causal information of past actions due to environment change.

The contributions of this work are fourfold. In a human-subjects study, we found strong

evidence that people prefer verbal explanations coupled with non-verbal cues. To verbally explain,

people prefer robots to get their attention first, then concisely explain, and are only willing to ask

a few follow-up questions for more details. Then I contributed explanation generation algorithms

using Behavior Trees (BTs), a simple yet powerful robot task sequence method for high-level

and failure robot explanations. We framed BTs into semantic sets to generate explanations from

the resulted shallow tree and demonstrated the algorithms with a complex mobile manipulation

task and a taxi domain navigation task. BTs were also made dynamically modifiable for behavior

insertion after users’ follow-up questions. Thirdly, we contributed a complete projection mapping

implementation solution for instant and salient robot communication: from how to choose an

off-the-shelf projector, how to calibrate it, and the underlying principle, to all the code and files

needed to readily integrate the solution into any ROS system. Finally, I investigated physical

replays, verbal and projection markers for robots to help people infer missing causal information
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of a robot’s past actions. We found that a multimodal approach, including all physical replay,

verbal, and projection markers, provided better aid in inference-making, less mental workload,

and more trustworthy robots.
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1 Introduction

As robots are being pushed by researchers and the industry to complete more complex tasks, im-

proving the understanding of a robot’s behaviors while it is completing the tasks is increasingly

important. With the advancement and wide adoption of deep learning techniques, explainability

of software systems and interpretability of machine learning models has attracted both human-

computer interaction (HCI) researchers (e.g., [1]) and the artificial intelligence (AI) community

(e.g., [114]). Work in human-robot interaction (HRI) has shown that improving understanding of a

robot makes the robot more trustworthy [46] and the human-robot interaction (HRI) more efficient

[7]. However, how robots can explain themselves at a holistic level, i.e., by generating explanations

and communicating them, remains an open research question.

As opposed to virtual AI agents or computer software, robots have physical embodiment,

which influences metrics such as empathy [146] and cooperation [14] with humans. Given this

embodiment, some research in human-agent interaction does not apply to human-robot interac-

tion. For example, in a literature review about explainable agents and robots [11], approximately

half (47%) of the explanation systems examined used text-based communication methods, which is

less relevant for robots that are not usually equipped with display screens. Instead, HRI researchers

have been largely exploring non-verbal physical behavior such as arm movement [56, 100] and eye

gaze [118]. Non-verbal behaviors can help people to anticipate a robot’s actions [102], but under-

standing why that behavior occurred can further improve one’s prediction of behaviors, especially

if the behavior is opaque [108]. Thus, robot explanations of their own behavior are needed.

For humans, explaining our behavior is a natural part of daily life; the lack of explana-

tions is unsettling and disturbing [71]. Psychologists have long studied human explanations. As

categorized by Malle [108], we either explain what was unexpected or strange to have a com-

plete and coherent understanding, known as meaning-finding explanations, or use explanations

as communicative acts to create shared meaning and manage social interactions to influence the
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explainee’s mind or behavior, known as interaction-managing explanations. From an early age,

people seek explanations for clarification and further understanding when surprised or confused

[108, 90, 166]. As a counterexample, Moerman [117] found that patients feel better when they

receive explanations about their illness. Thus, it is important for others to provide explanations to

improve understanding. This need is equally true for robots, often designed as intelligent beings

with physical appearances that resemble humans.

Yet to our best knowledge, it remains underexplored how robots should be enabled to ex-

plain, despite the large body of HRI research on non-verbal cues to indicate a robot’s intent (e.g.,

[56, 118, 100]).

1.1 Research Questions

There are 3 major research questions addressed in this dissertation. They are listed below with

subproblems so we can divide and conquer to achieve the goal. These research questions served as

a guide pointing to the directions of this thesis.

1. Desired robot explanation: What do people want a robot to explain? Are verbal explana-

tions necessary for a robot that already shows non-verbal motion cues? If so, how can we

ensure that the robot explains itself in a way that is preferred by humans?

2. Explanation generation: How can a robot generate explanations from its internal states?

What is the best representation to organize a robot’s internal states? How can we enable

roboticists to provide explanations through programming?

3. Explanation communication: Last but not least, how could robots communicate explana-

tions? What other modalities can a robot combine to better communicate with people? For

long-term human-robot interaction or post-hoc introspection, how can a robot explain its

behavior and decisions in the past?
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1.2 Statement of Problem

In my thesis, I wanted to investigate robot explanations desired by humans, develop techniques to

generate and communicate explanations. Human subjects studies were planned for evaluation.

Specifically, to enable a robot to explain itself, robot designers must have insight into what

and how humans want robots to explain its behavior, i.e., desired robot explanations. A formal

user study was needed to investigate this. After gaining knowledge of desired explanations, the

robot designer must incorporate this knowledge to generate explanations. After explanations are

generated, the robot must explicitly communicate them in the desired way by humans, along with

modalities that are robot specific. For communication, robots should not only explain their current

behaviors but also their past.

1.3 Approach

To investigate desired robot explanations, we drew inspiration from psychology, specifically hu-

man explanation studies. For a person who wants other people to explain, psychologists have found

that people hope to get causal knowledge from explanations [105, 22] rather than from statistical

evidence [72]. Koslowski [99] gives an example that both children and adults will not believe

that the color of a car is a factor for gas mileage difference, rather only that the size of the car is.

However, the belief is discarded when an explanation for how color affects the mood of a driver is

given, which can change whether or not the car is driven in a fuel-efficient manner. With causal

knowledge, understanding is improved, and “people can simulate counterfactual as well as future

events under a variety of possible circumstances” [108].

Knowing that the purpose of seeking explanations is for causal knowledge, we then designed

a user study by manipulating the amount of causal information provided in different execution

conditions. I have designed and conducted the study on Amazon Mechanical Turk, the data is

analyzed and results are presented in Chapter 3.

3



For explanation generation, a good starting point has been to investigate how a robot’s

internal states could be represented, from which we can find ways to convert them to external

explanations. I started reviewing action sequence methods for robotic task specification and exe-

cution. I found the Behavior Tree approach is a better match because it is not only simple – using

the analogy of trees and making the logic simpler to reason about and explain – but also powerful

due to its expressiveness by having different node types to cover different use cases (See Chap-

ter 2.3 and 4.2). Behavior Trees have also been presented to end-users for robot programming

[133], utilized on Rethink Robotics Sawyer robots [40], and used in Learning from Demonstration

tasks [65]. Paxton et al. [134] also showed that a system with BT was rated highly usable in a

System Usability Scale (SUS) questionnaire, which paves the way to our explanation use case for

end-users.

Nakawala et al. [122] discussed several other popular approaches for robot action sequence

presentations, including ontology, state machines, and Peri Nets. Ontology belongs to the knowl-

edge presentation family; this approach attempts to infer the task specification by high-level, ab-

stract, underspecified input from a preset of actions, e.g., place the cup on the left of the plate.

However, one drawback is that this knowledge presentation approach has less focus on how to

specify tasks [97], leaving important specification details in a black box that is out of the develop-

ers’ and users’ control. State machines are overwhelmingly popular and extremely flexible, but this

method has maintainability, scalability, and reusability issues due to its complexity [40], which are

caused by interdependent states that are tightly coupled by transitions between states. Peri Nets are

more of a technical underlying approach, specifically designed to tackle the concurrency issue by

introducing operators and tokens, which in turn exposes unnecessary implementation details that

humans would not explain.

Given the potential of Behavior Trees, I proposed a series of algorithms to frame Behavior

Trees into a set of goals, subgoals, and steps to avoid deep hierarchy, and the shallow hierarchy is

then used to generate high-level and failure explanations. This work is discussed in Chaper 4.
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To communicate explanations to humans, robots should take advantage of robot-specific

modalities for accurate communication. In the study of desired robot explanations, results show

that participants thought nonverbal cues are confusing, including head and arm movement. Thus,

methods for accurate externalization of robots’ internal states are needed. In Chapter 2.5, I re-

viewed the related work for the use of display screens, augmented reality, and robot activities (i.e.,

non-verbal cues). We have found projection mapping has the potential for accurate externalization.

As opposed to the non-verbal methods and verbal explanations found among humans, pro-

jection mapping is a method that allows for direct and accurate externalization. This projection

has the potential to completely remove the need for mental inference as the perceived objects or

the objects to be manipulated are directly externalized. The directness is similar to the use of a

display screen, but projection is more salient because bystanders or robot coworkers can also see

the projection from farther away, instead of requiring people to stop their work in order to walk to

a monitor to examine the robot’s states. Direct projection onto the operating environment also has

the potential to eliminate mental mapping from other media such as a monitor, which can cause

misjudgment and lead to undesired consequences. We implemented projection mapping on a Fetch

robot.

Finally, I conducted a human subjects study to look into how a robot could provide post-hoc

explanations in long-term interaction scenarios to help people infer missing causal information

due to environment change after a robot’s past actions, including the projection communication

method. This focus is interesting as the environment will highly likely change in long-term in-

teraction scenarios and can lead to the loss of key causal information, e.g., a moved object after

manipulation or a wet-floor sign as a ground obstacle removed after navigation.

To approach the problem, we again drew inspiration from psychology, especially the field

of observational learning, which studies how to better learn attitudes, values, styles, and behaving

by observing examples provided by others [17]. For robots, the acquisition of behaving is of

particular interest and has been actively studied in the imitation subfield on how children and
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adults imitate action sequences. Human imitation researchers [68] found that intentional actions

with verbal markers (e.g., “there”) help aid causal inferences because adults and children assume

the actions are made purposefully to reach a goal. Thus, I incorporated the verbal markers, and

because projection markers can also be purposeful, projection is also included. Specifically, we

investigated a combination of physical replay, verbal and projection indications, as well as each

individually, resulting in 7 conditions. Chapter 6 presents the experiment design and the findings

on whether participants were able to infer missing causal inference during the conditions.

1.4 Contributions

In summary, the primary contributions of this dissertation are shown below. The order follows the

organization of this dissertation.

1. Through a user study and a strict replication study, we gain knowledge to better understand

robot explanations that are preferred by humans. This step is important before we explore

how to generate explanations. Major findings include

(a) Verbal explanations are needed to couple with non-verbal cues.

(b) Robots needs to get the attention of explainees before explaining.

(c) Explanation should be concise and happen when the robot failed.

2. Algorithms to semi-automatically generate explanations, including

(a) Modeling complex and simple robot tasks using simple yet powerful behavior trees

(i.e., a complex mobile kitting task and a grid world task which is common for rein-

forcement learning).

(b) Framing behavior trees into four levels to generate shallow hierarchical explanations,

as informed by the finding of concise explanation

(c) Making behavior trees dynamic to modify the robot’s task sequence after explanation
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(d) Failure explanation generation algorithms by leveraging behavior tree node types

3. Robot-agnostic implementation of projection mapping, a direct and instant method for a

robot to communicate explanations.

(a) Underlying principles from 3D point cloud input to 2D projection output

(b) Open-sourced code2 with sample ROS nodes, Rviz configuration files, sample point

cloud data, and ROS launch files

4. Through a human subjects study, we expand our knowledge of how a robot could aid people

to infer past missing causal information in both manipulation and navigation tasks. This is

important in a long-term human-robot interaction scenario where objects may be replaced or

moved over time. Main findings are

(a) Compared to physical replays, verbal and projection markers alone are almost always

slightly worst.

(b) For picking, navigation, and placing location inferences, projection and verbal markers

with arm movement should be used for correct inferences.

(c) To make picking inference faster, include physical replay.

(d) To accelerate inference of ground obstacle location in navigation, projection markers

only are remarkably efficient.

(e) For placing inference, verbal indicators are exceptionally efficient.

(f) To increase people’s confidence in their inferences, include physical replay in picking

and navigation scenarios; For placement, include verbal indicators with replay.

(g) For lighter mental workload, use replay conditions.

2https://github.com/uml-robotics/projection_mapping
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(h) To achieve better trust, include physical replay and projection; Verbal indicators are

optional.
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2 Related Work3

2.1 Desired Explanations

Before we evaluate our robot explanation system, we must investigate what do humans want robots

to explain.

Psychologists have long studied human explanations. As categorized by Malle [108], hu-

mans either explain what was unexpected to have a complete and coherent understanding – meaning-

finding explanations – or use explanations as communicative acts to create shared meaning and

manage social interactions to influence the explainee’s mind or behavior – interaction-managing

explanations. From an early age, people seek explanations for clarification and further understand-

ing when they are surprised or confused [108, 90, 166]. In contrast to the unsettling experience

due to not having any explanation from other people [71], Moerman [117] found that patients feel

better when they receive explanations about their illness.

Researchers have also started to enable virtual agents to provide explanations. Ofra, Finale,

and David [9] used the Pac-Man platform to summarize and explain Pac-Man’s turning behavior

through videos. A human-subjects study [8] on this technique showed that participants preferred

summaries from the model trained on participant-provided data rather than author-provided data.

Indeed, artificial intelligence researchers (e.g., [113]) and the human-computer interaction com-

munity (e.g., [2]) are also contributing towards explainable or interpretable systems, including

autonomous agents. Due to the embodiment of physical robots, some research in these fields (e.g.,

[11, 159]) is less applicable to human-robot interaction. In a literature review about explainable

agents and robots [11], approximately half (47%) of the explanation systems examined, used text-

based communication methods, which may be less relevant for robots that are not usually equipped

with display screens. For some other work in the AI community (e.g., [116, 37]), however, the main

audience has been machine learning experts interpreting trained models or the “black-box” systems

3Portions of this chapter appear in a paper [80] jointly authored with Jordan Allspaw, Adam Norton, and Dr. Holly
Yanco. Please see Publication 1.
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[4], although recently there is a shift to non-expert end-users for human-in-loop AI systems [172]

and some in automated planning specifically [34].

However, not much is known about what robots should explain and how robots should pro-

duce verbal explanations as humans do. De Graaf and Malle [44] concisely discussed the theory

behind human behavior explanation developed by psychologists in the past, and proposed to ap-

ply the theory behind human behavior explanation to autonomous intelligent systems. But robot

embodiment and the difference between human and robot explanations remain largely unclear in

the literature. Additionally, Thellman et al. [157] compared people’s interpretations of humanoid

robot behavior to human behavior in static images with text descriptions and found that conscious

goals are the perceived causes of robot behavior, while human behavior seems to be caused by

dispositions. Hayes et al. [87] proposed explaining robot controller policy by manually annotating

functions during programming, but this method is limited to programmers, and the explanations

are constrained to programmers’ logic, which may not be helpful for non-expert or non-roboticist

explainees. Chakraborti et al. [36] treated explanation as a problem to the suggestion of humans’

mental models of a robot ([153]) to align with the robot’s model. The proposed algorithm was

claimed to generate explanations with desirable requirements, such as completeness, conciseness,

monotonicity, and computability, which were mathematically formulated but not verified with hu-

man participants.

Instead of generating explanations directly and assuming certain qualities of explanations,

we explore and attempt to better understand desired robot explanations by conducting a user study.

Implicit nonverbal cues to express robot intent have also been investigated in the HRI community.

Dragan et al. [56] proposed legible motion that adds extra robot arm motion to reveal a robot’s

reaching intent to a specific object. Kwon et al. [100] used the similar concept of adding legible

motion to indicate whether a robot could lift a cup or push a bookshelf. For some conditions,

the added legible motion may have been unexpected to participants rather than helpful in aiding

their understanding. While our focus has been on motion cues, for a comprehensive review of all
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non-verbal cues, we refer readers to [32].

Like humans, the robot should be capable of explaining unexpected things. But, as Malle

[108] pointed out, knowing why and what generates the behavior of a robot will further improve

one’s prediction of the resulting behavior, particularly when the cause is not easily apparent, such as

in the handover task we designed for an almost-reachable cup. In addition, interaction-managing

explanations must be verbally expressed [108], further suggesting implicit nonverbal cues (like

motion cues) need to be accompanied by more explicit verbal explanations.

2.2 State Summarization

2.2.1 Manual Methods

A common approach is for developers to manually create categories by which the robot can explain

its actions. For example, programmer specified function annotations for each designated robot

action are used in [87]. By creating a set of robot actions, correlated with code functions, the

system is able to snapshot the state of the robot before and after a function is called. Since the

state of the robot could be exceedingly large in a real-world system, the state space is shrunk by

isolating which variables are predetermined to be most relevant. These annotated variables are

recorded every time a pre- and post-action snapshot is made. The robot then uses inspection to

compare the pre- and post-variables of one action, compared to other similar successful actions, to

make judgments.

Devin and Alami [50] described a Theory of Mind system to estimate the human partner’s

mental states but did not explore how the robot would express the assessment. In a shared pie

cooking prep scenario task, Milliez et al. [115] proposed a simple tree-based system to embed

explanation into parameterized task leaves for different human knowledge level (i.e., new, beginner

and expert). As explaining the plan was not the focus, the work concentrated on determining

whether to explain based on the human knowledge level. The robot would explain every step to
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new collaborators, would ask beginners if they wanted an explanation, simply tell the current step

to intermediate users, and offer no explanation or prompt at all for expert users.

Notably, there are quite a few tree-based methods. Kaptein et al. adapted hierarchical task

analysis [143] to a goal hierarchy tree (GHT). This involves creating a tree where the top node

would be a high-level task, which can be broken into a number of sub-goals, each linked by a be-

lief (i.e., condition). Each sub-goal can then be broken into either sub-goals or actions. Choosing

one sub-goal or action over another is based on a belief. The GHT can then be used to generate

explanations. When comparing goal-based vs. belief-based explanations, Kaptein et al. found that

adults significantly preferred goal-based explanations. However, this work focused on cognitive

reasoning rather than behavior explanation or behavior programming and execution. While a NAO

robot was used, the work did not involve any physicality such as arm or leg movement. In contrast,

our work builds the foundation to provide a complete robot task specification and execution so-

lution for robot developers who ultimately generate explanations either manually or by proposing

state summarization algorithms.

2.2.2 Summarization Algorithms

While manually creating categories or explanations can be effective, it is time-consuming and not

easily generalizable. Many techniques attempt to automate the process.

Programmer supplied explanations might be able to accurately describe the state of a robot,

however, they can prove to be inadequate for a user. Ehsan et al. state that it is best to use a ra-

tionale justification [58] to explain to non-expert users, differentiating between a rationale and an

explanation. An explanation can be made by exposing the inner workings of a system, but this

type of explanation may not be understandable by non-experts. They suggest the alternative, a ra-

tionale, is meant to be an accessible and intuitive way of describing what the robot is doing. They

also discuss how explanations can be tailored to optimize for different factors, including relata-

bility, intelligibility, contextual accuracy, awareness and strategic detail; these factors can affect

12



the user’s confidence, understandability of the explanations, and how human-like explanation was.

The approach does not attempt to provide an explanation that reveals the underlying algorithm, but

rather attempts to justify an action based on how a non-developer bystander would think. The au-

thors explore two different explanation strategies. “Focused view rationale” provides concise and

localized rationale and is more intelligible, and easier to understand. “Complete view rationale”

provides detailed and holistic rationale and has better strategic detail and increased awareness.

Haidarian et al. proposed a metacognitive loop (MCL) architecture with a generalized metacog-

nition module that monitors and controls the performance of the system [78]. Every decision per-

formed by the system has a set of expectations and a set of corrections or corrective responses.

Their framework does not attempt to monitor and respond to specific expectation failures which

would require intricate knowledge of how the world works. However, the abandonment of intri-

cate knowledge makes it difficult to provide specialized, highly detailed explanations to an expert

operator.

Most of this prior work examined explanations within rule-based and logic-based AI sys-

tems, not addressing the quantitative nature of much of the AI used in HRI. More recent work on

automatic explanations instead used Partially Observable Markov Decision Problems (POMDPs)

which have seen success in several situations within robotics [162]. Unfortunately, the quantita-

tive nature of these models and the complexity of their solution algorithms also make POMDP-

reasoning opaque to people. Wang et al. proposed an approach to automatically generate natural-

language explanations for POMDP-based reasoning, with predefined string representations of the

potential actions, accompanied by the level of uncertainty, and the relative likelihood of outcomes.

The system could also reveal information about its sensing abilities along with how accurate its

sensor is likely to be. However, modeling using POMPDs can be time-consuming.

Miller discusses how explanations delivered to the user should be generated based on data

from social and behavioral research, which could increase user understandability [114]. Whether

the explanation is generated from expert developers or from a large dataset of novice operators,
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both cases still require manually tying the robot algorithm to an explanation, a process that can be

difficult and faulty.

In the literature review by Anjomshoae et al., they conclude that context-awareness and

personalization remain under-researched despite having been determined to be key factors in ex-

plainable agency [11]. They also suggest that a multi-model explanation presentation is possibly

useful, which would mean the underlying state representation would need to be robust enough

to handle several different approaches. Finally, they propose that a robot should keep track of a

user’s knowledge, with the explanation generation model updated to reflect the evolution of user

expertise.

As the more closed related work to Behavior Trees discussed below, we propose a set of

algorithms to semi-automatically generate explanations from the Behavior Trees robotic task rep-

resentations (see Chapter 4).

2.3 Robot Task Representation: Why Behavior Trees for Robot Explanations

For a robot to better perform tasks for which only humans are typically adept, robust task rep-

resentations are important [122]. It is critical to have a readable and user-friendly representation

for robot explanations, in order to minimize the mental burden of mapping robot task represen-

tation and execution to explanations. After perception, robot tasks can be decomposed to actions

and action sequences for execution [77]. Nakawala et al. [122] listed different methods for robot

action sequence presentations and discussed a few popular approaches including ontology, state

machines, and Peri Nets. We will discuss the merits and drawbacks of each of these approaches

and why behavior trees might be a better solution for robot programmers to manually provide robot

explanations.

Ontology belongs to the knowledge representation family; this approach attempts to in-

fer the task specification from high-level, abstract, underspecified input from a predefined set of

actions, e.g., put the cup left of the plate. Two popular ontology implementations are KnowRob
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[155, 19] and CRAM [20], which uses KnowRob. While CRAM4 uses the Common Lisp language,

KnowRob embeds a number of common actions observed by leveraging the Prolog language and its

logical predicates. As our previous work [80] discussed, KnowRob and CRAM introduce another

programming paradigm, logical programming, to the robot system. This paradigm is distinctly

different from C++ and Python used in the popular Robot Operating System (ROS) [137] (i.e., the

procedural and object-oriented paradigms). Additionally, the knowledge representation approach

does not examine how to specify tasks [134], leaving important details out of users’ control.

State machines have a long history in computer science [142] and in robotics [128]. Unlike

the traditional notion of a state, which is conventionally a world state, a state here is an execution

in the task flow. A notable finite state machine (FSM) implementation is the SMACH (“State

MACHine”) library [23], which is tightly integrated with ROS. SMACH offers two interfaces:

State and Container. A State represents an execution with a set of outcomes while a Container is a

policy comprised of a set of states, which can be used to encapsulate behavior. SMACH allows the

hierarchical composition of containers (i.e., state machines), which are also states with outcomes.

States are transitioned through outcomes. Researchers have used SMACH to represent and execute

tasks like serving drinks [24] and more general household tasks [124]. RAFCON [28] is another

implementation of a hierarchical FSM, very similar to SMACH but with a well-designed graphical

editor, including the ability to visualize deep hierarchies by panning and zooming. RAFCON has

been demonstrated to specify complex tasks such as planetary exploration [27, 145].

While a state machine can describe taskset workflow and is very flexible and well-known,

there are a few notable disadvantages. Colledanchise and Ögren [40] describe maintainability,

scalability, and reusability issues. A workflow represented by a large number of states or hierar-

chies is hard to maintain, scale and is prone to design errors: adding a new state requires careful

examinations [40] of incoming and outgoing transition dependencies, where the tight coupling of

states makes it hard to reuse certain transition-states. For robotics specifically, it adds unnecessary

4https://github.com/cram2/cram
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complexity especially for simple linear tasks without loops, such as a primitive pick manipulation

task. In addition, a manipulation state machine breaks the fluency of such manipulation primitives,

generating discrete arm movement that is paused, thus disconnected instead of a smooth multi-

waypoint trajectory. Also as Nakawala et al. [122] points out, state machine implementations are

code intensive and challenging for complex tasksets. For a comprehensive discussion of BTs and

state machines, we refer readers to the Behavior Trees book by Colledanchise and Ögren [40].

Peri Nets (PNs) and Behavior Trees (BTs) are of growing interest. They share the same the-

oretical concepts of state machines and have equivalent state machine representations. Peri Nets,

with sharing of tokens between states, are designed to be capable of modeling concurrency and

distributed execution and coordination, with applications in multi-robot systems [173] and robot

soccer [131]. However, concurrency can be achieved using framework-agnostic programming lan-

guage constructs which are well-known across programming languages. Distributed execution

can be achieved by using distributed frameworks like ROS or more general frameworks such as

Apache Spark5 for big data. Nonetheless, our work does not focus on concurrency and distributed

execution and coordination.

Compared to state machines, Behavior Trees (BTs) have some key advantages: modularity

and reusability by behavior unit, expressiveness, and human readability by coherent and compact

structure units [40]. Among state machines, Peri Nets and BTs, only the behavior tree approach

is inherently user-friendly through human readability – the tree representation is simple, sharing

familiar terminology of behaviors and using the analogy of a physical tree, removing the extra layer

of abstraction of states and transitions, or operators and tokens. This allows for less information

loss while we convert the underlying representation to explanations. In the last decade, BTs have

been used for pick-and-place tasks [13] and end-user programming to instruct industrial tasks

using a UR5 robot arm such as wire bending and sanding [76, 133]. Results of a user study on

a BTs-based robot programming interface [134] indicate that BTs are a practical and effective

5https://spark.apache.org/
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representation for specifying robot programs. Again for a comprehensive introduction, we refer

readers to the Behavior Trees book published by Colledanchise and Ögren [40].

Thus, we choose BTs for hierarchical robot explanation generation, especially high-level

tasks. Throughout this work, we also use BTs for primitive manipulation tasks after motion

planning for simplicity. However, in Section 4.7, we also suggest using MoveIt task construc-

tor (MTC) [73] for connecting sementicless waypoints in those manipulation primitive tasks, to

not only achieve smooth multi-waypoint arm trajectory, but also to give us more information about

the black-box probabilistic motion planning process, which provides potential for low-level expla-

nations in the future.

2.4 Robotic Data Storage and Querying

Before generating explanations, a persistent storage system is needed to retain robot data to explain

past events. The storage system must also have a query component for data retrieval, such as replay

for accurate externalization when needed.

Terminal output or logs are common methods for debugging during active development

and for error analysis after a robot has been deployed, but both methods have some drawbacks.

Terminal output is essentially volatile memory, lost after the terminal window is closed, disal-

lowing retrospection. However, despite being persistent on disks, software logs are unstructured

and unlinked between related data, which makes it hard to effectively and efficiently query. Thus,

researchers have been exploring database techniques to better store and query robotic data.

2.4.1 Storing Unprocessed Data

Many researchers have been leveraging the schemaless MongoDB database to store unprocessed

data from sensors or communication messages from lower-level middleware such as motion plan-

ners [127, 21]. Being schemaless allows for recording different hierarchical data messages without

declaring the hierarchy in the database (i.e., tables in relational databases such as MySQL). One
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such hierarchical example is the popular Pose message type present in the Robot Operating Sys-

tem (ROS) framework [137]. A Pose message contains a position Point message and an orientation

Quaternion message; a Point message contains float values x, y, and z; an orientation message is

represented by x, y, z, and w. It is imaginable to go through the cumbersome process of creating

tables of Pose, Point, and Quaternion. Even more tables have to be created for each hierarchical

data message. This advantage is also described as minimal configuration and allows evolving data

structures to support innovation and development [127].

Niemueller et al. [127] open-sourced the mongodb log library and are among the first to

introduce MongoDB to robotics for logging purposes, which has applications to fault analysis and

performance evaluation. In addition to being schemaless, the features that support scalability, such

as capped collections, indexing and replication, are discussed. Capped collections handle limited

storage capability by replacing old records with new ones. Indexing on a field or a combination of

fields speeds up querying. Replication allows storing data across computers using the distributed

pragma. Note that the indexing and replication features are also supported by relational databases.

While low-level data is needed, recording all raw data will soon hit the storage capacity

limit: when old data is replaced by new records, the important information in the old data will be

lost. This is particularly true when the data comes at a high rate; e.g., a HERB robot generates 0.1

GB per minute typically and 0.5 GB at peak times [127]. A more effective way is to be selective,

only storing the data of interest [129]. However, storing raw sensor data only facilitates debugging

purposes for developers; it does not solve the high-level explanation storage that will help non-

expert users to understand the robot.

In addition, while it might be appropriate to expose the database to developers, a more

effective way may be an interface that hides the database complexity, easing the cognitive burden

on developers. This could be programming language agnostic, for example, by having an HTTP

REST API or a ROS node. ROS is preferred as it is the most popular framework among roboticists

and the communication layer has been implemented in various languages such as C++, Python,
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C#6 and Go7.

Other researchers have also used MongoDB to store low-level data [20, 126, 169, 15] ex-

cept for Oliveira et al. [129] who used LevelDB, a key-value database for perceived object data.

Ravichandran et al. benchmarked major types of databases and found on average MongoDB has the

best performance to continuous robotic data [139]. However, time-series and key-value databases

are not included in the benchmark.

2.4.2 Storing Processed Data

Instead of looking for related data using the universal time range, Balint-Benczédi et al. proposed

Common Analysis Structure to store linked data for manipulation tasks [15]. The structure includes

timestamp, scene, image, and camera information. A scene has a viewpoint coordinate frame,

annotations, and object hypotheses. Annotations are supporting planes or a semantic location, and

object hypotheses are regions of raw data and their respective annotations. The authors considered

storage space constraints, thus filtering and storing only regions of interest in unblurred images or

point clouds. In their follow-up work [57], the Common Analysis Structure is used to optimize

perception parameters by users providing ground truth labels.

Similarly, Oliveira et al. proposed a perception database using LevelDB to enable object

category learning from users [129]. Instead of regions of raw point cloud data, user mediated key

views of the same object are stored linking to one object category.

Wang et al. utilized a relational database as cloud robotics storage so multiple low-end

robots can retrieve 3D laser scan data from a high-end robot, which has a laser sensor and its data

being processed onboard with more storage and better computation power [161]. Specifically, low-

end robots can send a query with their poses on a map to retrieve 3D map data and image data.

PostgreSQL is used but the data structure detail is not discussed, as the paper focuses on resource

6https://github.com/uml-robotics/ROS.NET
7http://wiki.ros.org/rosgo
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allocation and scheduling. However, a local data buffer on robots is proposed to store frequently

accessed data to reduce the database access latency bottleneck.

Dietrich et al. used Cassandra to store and query 2D and 3D map data with spatial contexts

such as building, floor, and room [52]. There are several benefits of using Cassandra, such as the

ability to have a local server that can query both local data and remote data, avoiding single-point

failure. Developers can also define TTLs (Time to Live) to remove data automatically, avoiding a

maintenance burden.

In addition, Fourie et al. leveraged a graph database, Neo4j, to link vision sensor data stored

in MongoDB to pose-keyed data [64]. Graph databases allow complex queries with spatial context

for multiple mapping mobile robots, which enables multi-robot mapping. This line of research

focuses on storing processed data but did not discuss a way to link raw data back to the processed

data. This is important because not storing linked raw data may lead to loss of information during

retrospection. There is a trend that other types of database systems, e.g., relational database (Post-

greSQL) and key-value database (LevelDB and Cassandra) are used to store those processed data,

because only a few ever-evolving data structures need to be stored.

2.4.3 Querying

There is no unified method for querying; most are application specific, such as efficient debugging

[127, 15] and task representation [21, 156]. Interfaces are also tightly coupled to programming

languages: JavaScript from MongoDB [127], Prolog [21, 156] and SQL [51].

In mongodb log, Niemueller et al. proposed a knowledge hierarchy for manipulation tasks

to enable efficient querying for debugging [127]. The knowledge hierarchy consists of all raw

data and the poses of the robot and manipulated objects, all of which are timestamped. When a

manipulation task fails, a top-down search is performed in the knowledge hierarchy in a specific

time range. Poses are at the root of the hierarchy and raw data, such as coordinate frames and point

cloud data, are replayed in a visualization tool for further investigation (i.e., Rviz in ROS). The
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query language is JavaScript using the MapReduce paradigm, which supports the aggregation of

data natively.

Beetz et al. proposed Open-EASE, a web interface for robotic knowledge representation

and processing for developers [21, 156]. Robotics and AI researchers are able to encapsulate

manipulation tasks semantically as temporal events with sets of predefined semantic predicates.

Manipulation episodes are logged by storing low-level data, which are the environment model,

object detection results and poses, and planned tasks in an XML-based Web Ontology Language

(OWL) [158]. High-velocity raw data such as sensor data and robot poses are logged in a schema-

less MongoDB database. Querying uses Prolog with a predefined concept vocabulary, similar to

the semantic predicates.

While Open-EASE allows semantic querying, it does not come easily. One disadvantage

is the introduction of a different programming paradigm, the logic programming in Prolog, which

robot developers have to learn for querying regardless of the paradigm being used for robot pro-

gramming. It is also unclear how to extend the predefined semantic predicates for other generic

tasks in different environments.

Balint-Benczédi et al. use a similar high-level description language to replace the JavaScript

query feature in MongoDB [15] to avoid the in-depth knowledge requirement of the internal data

structure. The description language also contains predefined predicates and can be queried through

Prolog. This work has the same drawbacks as Open-EASE.

Interestingly, Dietrich et al. proposed SelectScript, a SQL-inspired query-only language for

robotic world models without having relevant tables in the database [51]. Without using a different

programming language to specify how to retrieve data, SelectScript provides a declarative and

language-agnostic way to specify what data are needed rather than how. SelectScript also features

custom function support to queries and custom return type native to robotic applications such as

an occupancy grid map.

While SelectScript is modeled on the well-known standard SQL, it is not language-agnostic
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as stated. Custom functions are only supported in Python, leaving ROS C++ programmers behind.

Except for requiring significant effort to support C++, it is not trivial to extend the return type to

new data types such as the popular Octomap used in 3D mapping [93] for obstacle avoidance in

SelectScript.

Fourie et al. proposed to use a graph database to query spatial data from multiple mobile

robots [64]. However, it is not plausible for our use given that only one relationship is used:

odometry poses linked to image and RGBD data. This work also suffers the same drawbacks of

SelectScript in that custom queries have to be programmed in Java.

Similar to our argument in the previous storage sections, robotic database designers should

embrace the programming languages with which robotic developers are already familiar. Database

technology should be hidden by interfaces written in programming languages that also support

access to the underlying database for advanced and customized use.

MongoDB’s use has been proven by robotic developers and we thus choose to store low-

level sensor data with it. This is mainly to replace the rosbag utility8 which relies on a filesystem

and is not easy to query. Instead of writing from scratch, we used mongodb store9, a ROS package

of MongoDB interface to store raw and processed ROS messages to be replayed to MongoDB.

2.5 Human Interface for Communication

A human interface is used to communicate the explanations generated by the robot. Commu-

nication of the explanations can occur in different channels, such as a traditional graphical user

interface (GUI) on a monitor, head-mounted displays, and robot movements. While some human

interface methods have been studied for decades in the HCI community, especially GUI, the re-

lated work here is selective. We focus largely on novel approaches and the most prominent work,

justified by the citation number relative to the publication year. There is a large body of research

8http://wiki.ros.org/rosbag
9https://wiki.ros.org/mongodb_store
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for some techniques with existing comprehensive literature reviews, and we found the following

papers are particularly useful: eye gaze in social robotics [6], using animation techniques with

robots [144] (which provides 12 design guidelines), speech and natural language processing for

robotics [112], and tactile communication via artificial skins in social robots [147].

2.5.1 Display Screen

While computer interfaces largely use a display screen for the primary communication channel,

screens on robots are largely used to display facial expressions [95] due to their physicality, but are

considered less convenient than speech [45]. For co-location scenarios, it is rare to find a display

screen as part of a robot that is not attached to its head, so very little research has been performed

for simple displays or visualizations of sensor values or other relevant information.

Brooks investigated displaying a general set of state icons on the body of robots to indicate

internal states [25]. Five icons – OK, Help, Off, Safe, and Dangerous – were shown to participants

for evaluation. The results show that while bystanders are able to understand those icons, their

level of understanding is vague. For example, the “Off” icon could be interpreted as stating that

the robot is powered off or that it is just not currently actively operating.

SoftBank Robotics’ Pepper robot is one of the few robot systems that features a touch screen

not attached to its head. Feingold-Polak et al. found that people enjoyed interacting with a touch

screen on a robot more than using a computer screen with a keyboard [60]. Specifically, partic-

ipants preferred to use the touch screen to indicate the completion of a task. de Jong et al. used

Pepper’s screen to present buttons to use for inputting instructions, such as object directions [45].

Bruno et al. used Pepper’s touch screen like a tablet where multiple-choice questions are shown

and users can answer by tapping on the choices [29].

While a display screen has been demonstrated to be effective at showing accurate informa-

tion (e.g., replaying past events [94], which can be used during explanations), there is sometimes a

mental conversion issue where humans have to map what is displayed on the screen to the physical
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environment. A display screen may also suffer from being less readable from a longer distance,

which is important as such proximity to a robot may not be safe during certain failure cases [91].

2.5.2 Augmented Reality (AR)

Utilizing AR for explainability allows visual cues to be projected directly into the environment

with which the robot interacts, allowing for more specificity and reference points to be drawn.

This technique can make explanations more accurate, less ambiguous, and remove the burden of

mental mapping between different reference frames (e.g., 2D display screen compared to the real-

world 3D environment).

Andersen et al. proposed to use a projector to communicate a robot’s intent and task infor-

mation onto the workspace to facilitate human-robot collaboration in a manufacturing environment

[10]. The robot locates a physical car door using an edge-based detection method, then projects

visualizations of parts onto it to indicate its perception and intended manipulation actions; before

part manipulation, the robot will project the segment of interest to inform the worker of its next

manipulation target. The authors also conducted an experiment by asking participants to collab-

oratively rotate and move cubes with the robot arm, comparing the AR projector method to the

use of a display screen with text. Results show there were fewer performance errors and questions

asked by the participants when using the projector method.

For mobility, researchers also leveraged projection techniques onto the ground to show robot

intention. Chadalavada et al. projected a green line to indicate the planned path and two white

lines to the left and right of the robot to visualize the collision avoidance range of the robot [33].

Gradient light bands have also been used to show a robot’s path [165]. Similarly, Coovert et al.

projected arrows to show the robot’s path [41], while Daily et al. used a head-mounted display to

visualize the robot’s path onto the user’s view of the environment [42]. Circles have also been used

to show landmarks on a robot swarm using a projector located above the performance space [69].

However, the AR techniques utilize in these papers are passive and not interactive. Chakraborti
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et al. proposed using Microsoft HoloLens to enable a user to interact with AR projections [35],

where users can use pinch gestures to move a robot’s arm or base, start or stop robot movement, and

pick a block for stacking. Gao and Huang [67] proposed using a projector to project an interface

on a flat tabletop surface for robot programming. However, the focus is on the ease of robot

programming, and the projection does not require mapping objects back to their corresponding

real-world objects.

2.5.3 Robot Activities

Due to the physicality of robot systems, body language of robots has been studied extensively in

the HRI community to communicate intent. For example, Dragan et al. proposed using legible

robot arm movements to allow people to quickly infer the robot’s next grasp target [55]. Repeated

arm movement has also been proposed to communicate a robot’s incapability to pick up an object

[100]. Eye gaze behavior or head movement has also been studied (e.g., [118, 6]). However, this

communication method is limited in the amount of information that it can convey, if used as the

only channel of communication.

In addition to robot movements, researchers have also explored auxiliary methods of com-

munication such as light. Notably, the Rethink Robotics Baxter system utilizes a ring of lights on

its head to indicate the distance of humans moving nearby to support safe HRI. Similarly, Szafir

et al. used light to indicate the flying direction of a drone when co-located with humans in close

proximity [152]; the results show improvement in response time and accuracy.

In our work, we used projection mapping, which belongs to AR. As opposed to the non-

verbal methods and verbal explanations found among humans, projection mapping is a method that

allows for direct and accurate externalization. This projection completely removes the need for

mental inference as the perceived objects or the objects to be manipulated are directly externalized.

The directness is similar to the use of a display screen, but projection is more salient because

bystanders or robot coworkers can also see the projection from farther away, instead of requiring

25



people to stop their work in order to walk to a monitor to examine the robot’s states. Direct

projection onto the operating environment also eliminates mental mapping from other media such

as a monitor, which can cause misjudgment and lead to undesired consequences, resulted from the

robot’s actions to the world.

We have finished implementing projection mapping (Chapter 5), paving the way for the

replay experiment to be discussed in Chapter 6.

2.6 Observational Learning

To assist our investigation on how a robot can help people to infer past missing causal information,

we looked for inspiration from the observational learning field from Psychology. The field focuses

on human cognitive evaluations of observed actions of humans, as opposed to robots studied in

human-robot interaction (HRI). Observational learning itself is defined as being “concerned with

the acquisition of attitudes, values, and styles of thinking and behaving through observation of

the examples provided by others” [17]. Applied to robots that communicate explanations with

humans, we can get insight into how action sequences robots should potentially communicate to

others for them to understand the most important information the robot conveys, to leave a greater

impression.

One subfield in observation learning studies how children imitate action sequences, i.e.,

behaving, from others [30]. There are two schools of thought: (1) children are rational learners

(rational imitation [123]) who reproduce or imitate the most salient causal actions to an outcome;

(2) children tend to overimitate others [106, 88], copying unnecessary, non-causal yet normative

behavior in a social and cultural setting [97].

For over-imitation, it has been validated that children and adults both over-imitate a stranger’s

actions even when they are not aware of being participated in an experiment [167]. It is worth not-

ing that the experiment was conducted in a real-world setting to avoid the adult participants being

sensitive to a laboratory environment [31].
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The first school of thought, the rational-imitation paradigm, has also been studied with hu-

man adult participants. Buttelmann et al. [31] replicated the head-touch demonstration experiment

with eye-tracking equipment, where a model head-touch lamp when hands are occupied versus

hand-touch when hands are free. The results show that there are no significant differences between

adults and infants in attention, the amount of looking at the modeled action. The only significant

difference is that adults look at the model’s head in the video demonstrations significantly longer

than infants (around 1 minute and 20 seconds), while no difference is found for looking at the torso

(which takes only a few seconds).

In our work, we are particularly interested in the first paradigm, rational-imitation, partly

because a recent study [148] found that children overimitate robots less than humans due to the

lack of social motivations.

On the model side, researchers show the demonstrator’s intentional and knowledge state will

be used to aid the causal inferences [68]. In [68], results suggested that intentional actions with

verbal markers (e.g., “There”) are assumed by children that the model act purposefully to reach a

goal. Thus the intentional actions help to understand causality. Inspired by this, we incorporated

verbal markers into some of our conditions.

Regarding video studies, televised models showing an action sequence are not rare and have

been proven to be effective at an early age. In a study [121], 10- and 12-month-old infants are able

to learn and imitate negative and positive emotional reactions from the televised model. Another

study showed that 12-month-olds were also able to perform rational head-touch imitation during

constrained conditions (i.e., hands-occupied), compared to hand-touch, also from a televised model

[174]. During approximately the same year, researchers found that 2-year-old toddlers could learn

verbal labeling during an action sequence with repetition from television after a 24-hour delay, and

both video parent labeling and video voice-over labeling did not differ from live parent labeling

[18]. In another televised experiment, results show similar results that toddlers can use acoustical

action effect from both a live mode and televised model [98]. This line of work suggests that the
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action sequence in a video accompanied by the acoustical action effect should be on par with a

live demonstration. Inspired by the acoustical effect, we become creative and also explore the

projection mapping method in addition to verbal markers, because projection mapping is not a

method that humans have and can be seen as a salient effect.
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3 Desired Robot Explanation10

3.1 Introduction

Explaining our behavior is a natural part of daily life and the lack of explanations can be unsettling

and disturbing [71]. It is important to provide explanations to improve understanding. This need

is especially true for robots, often designed to be perceived as intelligent entities with physical ap-

pearances that resemble humans. Past work in Human-Robot Interaction (HRI) has illustrated that

improving understanding of a robot makes it more trustworthy [46] and the resulting interaction

more efficient [7]. Human-agent interaction researchers in the artificial intelligence community

have started to enable virtual agents to provide explanations [9]. Unlike virtual agents, however,

robots have physical embodiment, which has been shown to have effects on metrics such as empa-

thy [146] and cooperation [14].

Yet to our best knowledge, it remains unclear how robots should be enabled to verbally ex-

plain intention and behavior, or how to couple verbal explanations with other embodied explana-

tory cues, despite the growing collection of HRI research on non-verbal motion cues to indicate

a robot’s intent (e.g., [56, 118, 100]). Before empowering robots to explain themselves, we need

to answer what and how would humans like a robot to explain? In this study, we investigated

participants’ desired verbal explanations after being presented with robot non-verbal motion cues.

We drew inspiration from psychology: Specifically, research that examines the purposes

of desired explanations from another. Psychologists have found that people hope to gain causal

knowledge from explanations [105, 22] rather than from statistical evidence [72]. Koslowski [99]

illustrated that when told that a car’s color was a determining factor in the car’s gas mileage,

children and adults did not believe this to be true. Rather, they only believed that the size of the

car impacted gas mileage. Their beliefs could be changed, however, when given the explanation

that car color affects the mood of the driver which can change whether or not the car is driven

10This chapter appears in a workshop paper [85] jointly authored with Dr. Holly Yanco and a journal paper [81]
jointly authored with Dr. Elizabeth Phillips and Dr. Holly Yanco. Please see Publication 2 and 3.
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Figure 1: Three of the six handover conditions after the almost-reachable cup is detected, without
the headshake included. Left: Robot does nothing (No Cue). Middle: Robot’s head turns towards
the cup (Look). Right: Robot’s head turns towards the cup and its right arm is extended repeatedly
(Look & Point).

in a fuel-efficient manner. With causal knowledge, understanding is improved, and “people can

simulate counterfactual as well as future events under a variety of possible circumstances” [108].

Knowing that the purpose of seeking explanations is often for causal knowledge, we de-

signed and conducted an online experiment using Amazon’s Mechanical Turk (MTurk) to investi-

gate the perceived need for robot explanations, whether that perceived need is similar to what we

would expect of a human, as well as how people want a robot to provide such explanations even

when non-verbal causal motion cues are provided by the robot.

Participants first watched a scenario in which a Baxter robot was not able to hand over a cup.

Information about why the robot was not able to complete the cup handover (causal information)

was missing, i.e., the fact that the cup was slightly out of reach was not known to participants.

Participants then watched one of six reactions (Figure 1) from the robot containing motion

cues intended to convey why the robot was unable to complete the handover task: doing nothing

(No Cue), turning its head to the cup (Look), or turning its head to the cup with the addition of

repeated arm movement pointed towards the cup (Look & Point) and each of these with or without

the addition of the robot providing a Headshake.

In a questionnaire, we asked participants if they perceived unexpected things throughout
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the task that they felt the robot should verbally explain. We then asked about some of the desired

properties and the content of the robot explanations following a failed handover. Specifically,

we asked about desired explanation timing (at the end, in situ, a priori, or other), engagement

importance, whether and how robot explanations should be different from human explanations,

explanation summarization, and explanation verbosity.

Results revealed that participants felt robot behavior should be explained in all conditions.

The addition of a headshake and arm movement motion cues to indicate that the robot could not

complete the task did not result in reduced need for explanations or less perceived unexpected-

ness, but rather confused participants, as the headshake was often interpreted as the robot having

disobeyed the handover request, and the intention of the arm movement was unclear to participants.

Regarding the properties of robot explanations, participants reported that they wanted robots

to explain in situ, not at the end of the task. They also thought that engagement was important.

The robot should get the participants’ attention by looking at them and possibly address them by

name before explaining, which needs more investigation. People thought robots should explain

the same content as humans explain, wanted concise summaries, and were willing to ask a few (1

to 3) follow-up questions after a summarized explanation was provided by the robot in order to

gain more information. Participants thought the robot should explain why it failed to complete the

task, why it disobeyed them during headshake executions without any arm motion, and why it kept

moving its arm. When the robot did nothing, people wanted to know about the robot’s previous

behavior.

3.2 Hypotheses

Driven by the prior related work, partly on the motion cues, we formalized the following hypothe-

ses.
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3.2.1 The Need For Robot Explanations

Hypothesis 3.1 – Robot behavior needs to be explained. In general, robot behavior will be

considered unexpected to people, and there will be a desire for it to be explained.

Hypothesis 3.2 – As more causal information about robot behavior is provided, there will be

less need for an explanation from the robot. There will be an association between the amount

of causal information provided in robot behavior and participants’ reported need for explanation.

Specifically, as the robot’s behavior provides participants with more causal information, partici-

pants will report less need for explanation.

Hypothesis 3.3 – Adding a headshake to the robot’s explanation will result in less need for

an explanation. Including a negative headshake, which implies that the robot cannot complete the

handover task, will give participants more information about the robot’s behavior than execution

alone. When the robot couples its behavior with a headshake, participants will report less need for

explanation than when it does not.

3.2.2 Expected Properties of Robot Explanations

Hypothesis 3.4 – Explanations offered at multiple points in time will be desirable. Having

robots explain a priori, in situ, and at the end will be more desirable than at any one single point in

time.

Hypothesis 3.5 – Engagement prior to providing an explanation will be important. People

will prefer that the robot get their attention prior to explaining behavior as opposed to explaining

behavior without getting their attention.

Hypothesis 3.6 – Similarity to human explanations will be expected. Participants will report

that they expect that robot explanations should be similar to human explanations

Hypothesis 3.7 – Summarization will be preferred. Participants will prefer that the robot pro-
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vides an explanation that is presented as a summary as opposed to a detailed explanation.

Hypothesis 3.8 – Fewer number of follow-ups will be preferred. Participants will prefer to ask

fewer clarifying follow-up questions as opposed to more follow-up questions after an explanation

is given from the robot.

3.3 Method

3.3.1 Power Analysis, Participants, and Participant Recruitment

We used G*Power 3.1.9.4 [59] to perform two a priori power analyses because we planned to run

two types of hypothesis tests.

We first performed an a priori power analysis for “Goodness-of-fit tests: Contingency ta-

bles”. The parameters were: Effect size w = 0.5 for large effect size, α error probability = 0.05,

Power (1 - β error probability) = 0.95, Df = 2 which reflected the number of fixed choices in our

measures described in Section 3.3.3. The output parameters in G*Power showed that the sample

size to reach desired power 1 − β = 0.95 was 62 for a single goodness-of-fit test. Thus, for the 6

conditions of our 3× 2 experiment design, we needed at least 6× 62 = 372 participants.

We also performed an a priori power analysis for “ANOVA: fixed effects, special, main

effects and interactions” tests. The parameters were: Effect size f = 0.4 for large effect size, α

error probability = 0.05, Power (1 - β error probability) = 0.95, Numerator df = 2 (maximum for

main effects and interactions), and Number of groups = 6, reflecting the number of independent

conditions in our study. The output parameters showed that the total sample size needed was 100.

Thus our study would need approximately N = 372 participants to be sufficiently powered

for both types of statistical tests.

Using Amazon Mechanical Turk (MTurk), we recruited a total of 460 MTurk workers to

participate in the study. We purposefully recruited extra participants to account for potential data

loss due to some MTurk workers failing data quality assurance checks and/or not completing the
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entire study. All of the 460 participants completed the study. However, we had two participants

complete the study twice, providing us with 458 unique cases. Seventy-eight participants did not

pass the data quality assurance checks in the form of “attention check” questions (described below),

which resulted in 380 valid cases used in data analyses. To ensure that we had an equal number of

participants in each of the 6 conditions, we trimmed the data from the last participants who entered

into the study. This procedure resulted in a sample size of N = 372 with 62 participants in each of

the 6 between-subjects conditions.

However, after completing a strict replication study (see Section 3.5) and re-inspecting our

data, we found 4 participants who responded to a question by providing a partial or full copy and

paste of the common definition of a robot giving when searching the web for the word “robot”

(e.g., entry for robot on Wikipedia). We thus removed these four participants and then tried to

replace their data with data from four participants who had previously been trimmed from the

original dataset, as described above. However, we were unable to replace data equally across

conditions. Therefore, we trimmed the data again to balance the number of participants in each of

the experimental conditions. This process resulted in 61 participants in each condition, N = 366.

The analyses reported in subsequent sections were conducted on this final dataset.

The final sample included 209 males, 153 females, 3 participants who preferred not to say,

and 1 transgender person; with ages ranging from 18–74, M = 37, median = 34, skewness =

1.07. Seventy-three participants (20%) agreed with the statement, “I have experience with robots,”

204 disagreed (56%), and 89 (24%) responded that they neither agreed nor disagreed.

Specified qualifications for participation on MTurk included being over 18 years old, living

in the United States, which provided a reasonable assumption of some English language compre-

hension, having performed at least 1000 Human Intelligence Tasks (HITs), and a 95% approval

rating. Each MTurk worker, whether or not they passed data quality assurance checks, was paid

U.S. $1 for their participation.
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Table 1: Explanation Measure Items
Unexpectedness (Cronbach’s α = 0.80)
1. I found the robot’s behavior confusing.
2. The robot’s behavior matched what I expected. (Reversed)
3. The robot’s behavior surprised me.

Need (Cronbach’s α = 0.74)
1. I want the robot to explain its behavior.
2. The robot should not explain anything about its behavior. (Reversed)

Human-Robot Difference (Cronbach’s α = 0.49)
1. There should be no difference between what a robot says to explain its behavior and what
a person would say to explain the same behavior.
2. If a person did what the robot did, they should both explain the same behavior in the same
way.

Summarization (Cronbach’s α = −0.57; 0.65 if Q1 is dropped)
1. The robot should give a very detailed explanation. (Reversed)
2. The robot should concisely explain its behavior.
3. The robot should give a summary about its behavior before giving more detail.
* Likert items are coded as -3 (Strongly Disagree), -2 (Disagree), -1 (Moderately Disagree),
0 (Neutral), 1 (Moderately Agree), 2 (Agree), and 3 (Strongly Agree).

3.3.2 Robot Platform

A Rethink Robotics Baxter humanoid robot (humanlikeness score = 27.30 on a scale of 0 “Not

human-like at all” to 100 “Just like a human” [136, 62]) depicting a digital smiling face from

[61, 84] was used in the experiment. Baxter has a large appearance: 1.8m tall with two 128cm

arms, measured from its shoulder joint to gripper tip. It is taller than an average adult male over

age 20 in the U.S. (175 cm) [66], and Baxter’s arm is around two times longer than an average

human arm [104].

3.3.3 Measures

To test our hypotheses, we designed a measure consisting of items about participant perceptions of

robot explanations. To create the measure, we searched the existing HRI and robotics literature for

scales in the context of robot explanation, but few have been developed and validated by the com-
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munity. However, we did find a subjective scale of predictability in [54] by Dragan and Srinivasa;

because of its high internal reliability (Chronbach’s α = 0.91), we adapted two of its questions

(Table 1 in [54]) for our Unexpectedness measure (the last 2 questions in the first row in Table 1):

1. “The robot’s behavior matched what I expected” is adapted from “Trajectory ‘x’ matched

what I expected”.

2. “The robot’s behavior surprised me” is adapted from “I would be surprised if the robot

executed Trajectory ’x’ in this situation”.

Our measure consisted of four subscales, each with items tailored to gather information

about participant perceptions of the unexpectedness of the robot’s behavior, the need for explana-

tions, desired similarities and differences between robot and human explanations, and the desired

level of detail of robot explanations. For each subscale, multiple contradicting or very similar

questions were designed to help establish internal consistency. All items are listed in Table 1. Par-

ticipants responded to each item using a 7-point Likert-type scale that ranged from -3 “Strongly

Disagree” to 3 “Strongly Agree,” with 0 representing neither agreement nor disagreement at the

mid-point of the scale. The order of these items was presented to participants at random.

Additionally, we asked participants to respond to several items about desired properties of

robot explanations. These included questions about explanation timing, engagement, and summa-

rization, as follows:

• Timing (forced-choice). When would be the best time for the robot to explain its behav-

ior? Participants responded with “At the end”; “Whenever something unexpected happens”;

“Before something unexpected happens”; or “Other (Please elaborate).”

• Engagement Importance (true/false). Do you think it is important for the robot to get your

attention before starting to explain its behavior?
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• Engagement Approach (forced-choice). How should the robot get your attention before start-

ing to explain its behavior? Possible responses included, “Look at me”; “Raise volume”; or

“Other (Please elaborate).”

• Summarization (forced-choice). After the robot gives a summary about its behavior, how

many questions would you be willing to ask to get more details from the robot? Response

choices included, “None”; “A few (1 to 3)”; “As many as needed (4 or more).”

• Content (open-ended). What would you like the robot to explain specifically?

• Content Reasoning (open-ended). Please explain why. (Why would you like the robot to

explain the things you mentioned above?)

Finally, we asked several attention check questions to help us ensure participant attention

to the experimental stimuli, similar to those used in Brooks et al. [26]. Participants were asked

to indicate the color of the robot depicted in the experimental stimuli (Red and black; Blue and

yellow; Green and white), the identity of certain objects in the scene: if there were any robots

shown in the scene (Yes; No), and if the robot moved (Yes; No). Failure to answer any of those

questions correctly resulted in the removal of the participant’s data from the analysis. These at-

tention check questions were randomly intermixed with the items asking about robot explanations

and the properties of robot explanations.

3.3.4 Experimental Design

This study followed a 3 × 2 between-subjects design. Participants were asked to imagine that

they were interacting with the Baxter robot while viewing a video of Baxter executing a handover

task. In the handover task, the robot attempted to grasp and hand over a cup under one of the

study conditions. The handover task was chosen because robots will often be expected to complete

handover tasks, especially as they enter factories and homes. The handover task is one of the
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You feel thirsty, so 
you ask the robot 
to pass the cup.

The robot is organizing 
the white desk below: 

placing the small robots 
into the transparent bin.

Imagine you are 
watching Netflix on 

a tablet here.

Figure 2: To establish the handover task context, the image above was first presented to participants
with the three yellow pop-ups slowly fading in one after another clockwise from the top left.

most common interactions among humans. Additionally, the handover task involves manipulation,

which is characteristic of typical tasks that many robots currently do. We manipulated the robot’s

handover task execution type. The execution type conditions were designed to provide participants

with a variety of robot motion cues giving causal information for why the robot was unable to

complete the handover task in each video. We also manipulated whether or not the robot shook its

head negatively (Headshake) while completing each execution type. This resulted in 6 between-

subjects experimental conditions. The code for this study is available on GitHub11.

Study Conditions For each condition, participants were provided with a video (see Figure 2),

where they were informed that the Baxter robot was organizing a desk by placing several small toy

robots into a transparent bin. Participants were then told to imagine that they were with Baxter in

the scene by imagining that they were busy watching Netflix near Baxter. They were then asked to

imagine that they were thirsty and have asked Baxter to pass them a cup.

11https://github.com/uml-robotics/takeit
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Table 2: Study Conditions Across The Two Factors
Execution Type: Motion Cues Headshake

Look & Point: Head turning & arm movement
With Headshake

Without Headshake
Look: Head turning

No Cue: None of above

Also seen in Figure 2, in the video, the three pieces of information described above were

presented by pop-up text box annotations: From the top left, each pop-up text box slowly faded

in, in clockwise order, and displayed for 5 seconds. The duration was selected to make sure that

participants had ample time to finish reading a pop-up before the next was shown. Participants

could also pause the video to review the information.

Note that for the pop-up content, only the left-bottom pop-up (ask the robot to pass the cup)

was important to establish the handover task. The other two were intended to make the imagined

interaction in the scenario more complete and used to remove potential bots or careless responders

via attention check questions.

After viewing these annotations, the participants viewed the following white text on a black

background for 6 seconds: “The robot understands your request. Now please watch how the

robot responds.” Note that we carefully selected the neutral word of “understand” rather than

“acknowledge” or “accept” to avoid the impression that the robot would unquestionably finish

the handover task. After presenting this information, the video depicted the Baxter dropping the

small toy robot it was previously holding and about to place in the transparent bin. Then Baxter

attempted to pass the cup under one of the study conditions described below.

Table 2 briefly lists the experimental conditions across the two factors Execution type and

Headshake. The videos shown to participants are available on YouTube12. A brief summary of

each of the study conditions is provided below.

• Look & Point without Headshake. Inspired by the legible arm motion research in [56, 100],

12https://www.youtube.com/playlist?list=PLnvaJwyK3MF-x0at0pBEq_PHbheI4fMS7
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the Look & Point execution conditions were designed to provide the most causal information

about why the robot was not able to complete the handover task. The robot provided motion

cues to help participants infer causal information for why the robot could not execute the

cup handover task. Specifically, in this condition, during the handover task, the robot would

stop organizing, move its arm to reach towards the cup, simultaneously move its head to

look at the cup, and keep extending its arm fully toward the cup. However, it could not reach

the cup on the table. The robot repeated this pattern of motion cues towards the cup three

times, which was intended to show participants that the robot was trying to complete the task

but was unable to do so because the cup was out of reach. Note that this type of motion is

not what a robot would commonly do when it cannot complete a gasping or handover task;

commonly the robot would simply stop organizing and do nothing. Typically its motion

planner, e.g., MoveIt [38], would return a plan or execution failure status when the object is

not reachable, rather than physically illustrating that an object is out of reach.

• Look & Point with Headshake. Under this condition, we added a Headshake to the Look

& Point motion execution. In addition to arm and head motion cues described above, after

reaching for the cup, the robot shook its head from left to right (i.e., a “No” pattern) to further

communicate that it could not reach the cup. The robot repeated the reaching motion while

shaking its head two more times before the video ended.

• Look without Headshake. In the Look execution condition, during the handover task, the

robot would stop organizing, and turn its head towards the cup. The robot did not reach its

arm toward the cup. Roboticists may immediately understand why the robot was unable to

complete the handover task: The robot turns its camera mounted on its head, probably an

RGBD camera, to detect the cup with depth information, plans to maneuver its arm to the

pose of the cup, and eventually failed to do so because the cup was out of reach. However,

because roboticists represent a small group of specialists, this execution type is likely opaque
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to most people, who will be wondering why the robot turned its head toward the cup but did

not pick it up.

• Look with Headshake. Similar to the Look & Point with Headshake condition, in the Look

with Headshake condition we added a Headshake to the robot’s looking motion cue. Specif-

ically, the robot would stop organizing, turn its head towards the cup, and shake its head

negatively. The robot did not reach its arm toward the cup.

• No Cue without Headshake. Under this condition, during the handover task, the robot would

stop organizing and do nothing. Unlike the previous two execution conditions, the robot did

not provide any motion cues, e.g., turn its head or reach with its arm.

• No Cue with Headshake. Again we added a Headshake to the robot’s execution. In the

handover task, rather than doing nothing, the robot would stop organizing and shake its

head from left to right. Note that, unlike the Look with Headshake condition, the robot did

not turn its head toward the cup before shaking its head in a “No” pattern.

3.3.5 Procedure

The study was conducted on Amazon’s Mechanical Turk (MTurk) where participants entered the

study via an anonymous link to a Qualitrics survey. Once started, participants were presented

with informed consent information. After reviewing this information and agreeing to participate,

participants were randomly assigned to one of the experimental conditions. On Qualtrics, partic-

ipants were provided with the following instruction, “Before answering questions, please watch

the following video in full-screen mode.” Participants then watched one video depicting the robot

executing the handover task under one of the experimental conditions. After viewing the entire

video, participants were then asked to complete the measure containing the explanation, properties

of explanations, and attention check items. On the survey page, participants were encouraged to

review the video as many times as they needed. Specifically, they were told: “You may go back
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to the video by clicking the back button at the bottom of this page. If you need to do this, your

answers on this page will be saved.” Participants were then provided with a code to receive their

payment. The entire study took approximately 10 minutes to complete for most participants, who

were compensated U.S. $1 in return for participating in the study. This study was approved by the

Institutional Review Board at the University of Massachusetts Lowell.

3.4 Results

We used R to analyze the data. Table 1 lists all of the items from the robot explanations measure,

the anchors for the Likert-type scales, and Cronbach’s alpha values of internal consistency for

each of the items. M used without standard deviation values denotes median values throughout

this section.

3.4.1 H3.1: Robot behavior will be considered unexpected and needs to be explained

Cronbach’s alpha on the unexpectedness subscale was 0.80, a good level of internal consistency

reliability [49]. We thus calculated an unweighted average score of responses across the items to

achieve a composite score for the unexpectedness scale on our questionnaire, plotted in Figure 3

and 4.

To analyze the data, we used a two-way between-subjects factorial ANOVA with the unex-

pectedness score as a dependent variable.

We did not find a statistically significant interaction between Headshake and Execution

Type, but found statistically significant main effects for Headshake (F (1, 360) = 15.91, p <

0.0001) and Execution Type (F (2, 360) = 11.90, p < 0.0001) on unexpectedness scores.

Before we conducted pairwise comparisons across conditions, we used the ANOVA model

to calculate estimated marginal means of all conditions and performed multiple comparisons with

Holm-Bonferroni correction [89] to test whether these means significantly deviate from 0 (H0 :

µ = 0). Without Headshake, we only found a statistically significant difference in No Cue ex-
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Figure 3: The distribution of Unexpectedness responses with median lines and estimated marginal
means. Except for Look without Headshake and Look & Point without Headshake, all conditions
were rated unexpected (first two lines of the annotation in each of the boxes, comparison against 0).
Results of post-hoc pairwise comparisons are also shown (second and third lines of the annotation
in each of the boxes).

ecution type (1.00 ± 0.17, p < 0.0001), but not in Look (0.20 ± 0.17, n.s.) and Look & Point

(0.20 ± 0.17, n.s.) conditions. With Headshake, statistically significant differences were found in

all execution types – No Cue (1.38± 0.17, p < 0.0001), Look (1.16± 0.17, p < 0.0001) and Look

& Point (0.52± 0.17, p < 0.01).

The results above suggest that, when the robot performed the Look & Point and Look exe-

cutions without Headshake, participants felt neutral about the unexpectedness (neither unexpected

nor expected), but participants reported that the robot’s behavior was significantly more unex-

pected for the No Cue execution than the other two execution types. Surprisingly, the addition of

the Headshake behavior did not decrease the unexpectedness but rather made the robot’s behavior

more unexpected with strong evidence in the No Cue and Look with Headshake conditions and
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Figure 4: Boxplot of Unexpectedness responses. All robot behaviors were rated unexpected except
for Look without Headshake (the middle red box) and Look & Point without Headshake (the right
red box).

weak evidence13 in the Look with Headshake condition (median scores in the top row in Figure 3).

We also performed post-hoc pairwise comparisons using Tukey’s test with Holm-Bonferroni

correction (H0 : µi = µj). Without Headshake, statistically significant differences were found

between Look & Point and No Cue (0.80±0.24, p < 0.01), and Look and No Cue (0.80±0.24, p <

0.01). With Headshake, we only found the statistically significant difference between Look & Point

and No Cue (0.85± 0.24, p < 0.01) conditions.

The pairwise comparisons suggest the No Cue execution was more unexpected than the

Look & Point and Look conditions. However, no statistically significant differences between Look

& Point and Look execution conditions were found in either Headshake condition.

In summary, H3.1 which states that all robot behavior would be considered unexpected was

partially supported. For the without Headshake conditions, participants reported that the robot’s

behavior in only the No Cue condition was unexpected but rated it more neutral in the Look and

Look & Point conditions. The robot’s behavior was rated as unexpected across Headshake condi-

tions, however.

3.4.2 H3.1, H3.2 & H3.3: Causal information, Headshake, and need for explanations

Similar to the unexpectedness responses, we calculated an average score for responses to the need

for explanation items. Cronbach’s alpha for this subscale was 0.74. Responses are plotted in

13This effect becomes non-significant in our replicated study.
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Figure 5: The distribution of Need responses with median lines and estimated marginal means,
showing that robot behavior should be explained in all conditions. No statistical significance was
found in post-hoc pairwise comparisons.

Figure 5 and 6. We also used the between-subjects factorial ANOVA to analyze the data. Again,

we did not find a statistically significant interaction between Headshake and Execution Type, but

found statistically significant main effects for Headshake (F (1, 360) = 14.99, p < 0.0001) and

Execution Type (F (2, 360) = 3.31, p < 0.05) for explanation scores.

Again, before we conducted pairwise comparisons across conditions, we used the ANOVA

model to calculate estimated marginal means of all conditions and performed multiple comparisons

with Holm-Bonferroni correction [89] to test whether these means significantly deviate from 0

(H0 : µ = 0). Results show statistical significance across all conditions (p < 0.001):

• Without headshake:

– Look & Point: 0.75± 0.18, p < 0.0001

– Look: 0.62± 0.18, p < 0.001

– No Cue: 1.18± 0.18, p < 0.0001
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Figure 6: Boxplot of the Need for explanation responses. Participants in all conditions agreed
that robot behavior should be explained. No significant differences were found pairwise between
conditions.

• With headshake:

– Look & Point: 1.43± 0.18, p < 0.0001

– Look: 1.25± 0.18, p < 0.0001

– No Cue: 1.61± 0.18, p < 0.0001

This result suggests that people want the robot to explain and that the robot should explain its

behavior across all conditions, even when additional arm movement (Look & Point), head turning

(Look), and Headshake cues are included.

Pairwise comparisons were also conducted with Tukey’s test (H0 : µi = µj), not revealing

any statistically significant differences between the execution type conditions. This suggests that

people want the robot to explain in all conditions equally.

The analysis supports part of H3.1 that robot behavior should be explained, even when robot

behavior includes non-verbal motion cues. Together with responses to the Unexpected items, H3.1

was partially supported: when the robot’s behavior is deemed neutrally unexpected, the robot

should explain its behavior. However, H3.2 was not supported. As more causal information was

added across the conditions from No Cue to Look & Point, the perceived need for explanation did

not drop accordingly. H3.3 was also not supported: The pairwise comparisons showed no statis-

tically significant differences between with Headshake and without Headshake groups, suggesting

that the addition of the Headshake cue did not result in a less perceived need for an explanation
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Figure 7: Timing and verbosity preferences. Around half participants prefer the robot to explain
in situ and most (75%) participants are willing to ask only a few clarifying follow-up questions.

from the robot.

3.4.3 H3.4: Explanation timing

We performed a chi-square goodness-of-fit test on the responses to the multiple-choice timing

question, which revealed statistical significance (p < 0.0001). Post-hoc binomial tests with Holm-

Bonferroni correction for pairwise comparisons were performed and show significant differences

between in situ (p < 0.0001), a priori (p < 0.001) and the other response options (p < 0.0001),

except for explaining at the end (p = 0.76). Among the 13 participants who elaborated their

choice for “other”, four participants expressed that they wanted a running commentary from the

robot from the beginning of its action, which is different from asking in situ questions. All other

comments were either isolated or very similar to the other three choices.

Thus, H3.4 was not fully supported. As shown in Figure 7 left, approximately half (193/366, 53%)

of the participants wanted the robot to explain in situ as unexpected things happened, and only

66 (18%) participants wanted explanations from the robot before something unexpected happens.

However, the binomial test shows that the choice of subsequent explanations may have happened

by chance: whether more or fewer people wanted explanations after the robot’s behavior remains

unknown.
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Figure 8: Engagement (Look: Look at me, Raise: Raise volume, Other: Other (Please elaborate)).
Most participants (69%) agree it is important for the robot to engage with them before explaining.
Slightly over one-third of all participants prefer looking at them to get their attention.

3.4.4 H3.5: Engagement importance/preference

A chi-square test was run on the engagement importance true/false responses and indicated that the

proportion of “false” responses (115, 31%) to the item asking about whether it was important for

the robot to get the participant’s attention before giving an explanation was significantly lower than

“true” responses (251, 69%; p < 0.0001), as shown in Figure 8 left. Thus, H3.5 was supported: it

is important for the robot to get one’s attention before explaining.

Regarding the preference for how the robot should get the attention of humans (Figure 8 right),

a multinomial goodness-of-fit test was performed and shows statistical significance (p < 0.0001).

Post-hoc binomial tests with Holm-Bonferroni correction for pairwise comparisons were per-

formed and revealed significant differences between all choices (p < 0.0001 for all) but not for

Raising the volume (p = 0.62), which suggests people may have selected this choice at random. In

summary, more than one-third of participants (135, 37%) preferred the robot to look at them to get

their attention, and only 57 participants (16%) preferred the robot to raise its volume. Interestingly,

no participants chose the combined option to “Look, Raise & Other”.

Among the 43 participants who elaborated their answers about the “Other” choice, 30 par-

ticipants wanted the robot to address them by name or title or with words such as “hey” or “excuse

me”; 7 participants wanted a beep sound while the other responses were isolated.
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Figure 9: Robot vs. human explanations in what and how (green line indicates median). Half
participants agreed on no differences in both. Please see Section 3.4.5 for more details.

3.4.5 H3.6: Similarity to human explanation

For the two questions in this scale, Cronbach’s alpha reports 0.49, suggesting those two questions

represent two independent subscales. Upon further reflection, we realized that the first question

was asking about the difference in what to explain (i.e., “there should be no difference between

what a robot says to explain its behavior and what a person would say to explain the same behav-

ior.”) The second question was asking about the difference in how to explain (i.e., “if a person did

what the robot did, they should both explain the same behavior in the same way.”)

Thus, to test the responses, we ran a chi-square goodness-of-fit test on the responses to both

items independently. The chi-square test for the first question indicated a statistical significance

(χ2(6) = 108.58, p < 0.0001). Post-hoc binomial tests with Holm-Bonferroni correction show

statistically significant differences between Likert responses -3 (p < 0.0001), 1 (p < 0.0001), 2

(p < 0.0001), 3 (p < 0.0001) but not in -2 (p = 0.06), -1 (p = 0.46) and 0 (p = 0.17).

We also ran the tests on the responses to the second question. The chi-square test indicated

a statistical significance (χ2(6) = 75, p < 0.0001). Post-hoc comparisons show statistically signif-

icant differences in Likert responses -3 (p < 0.0001), 1 (p < 0.0001), and 3 (p < 0.01) but not in

-2 (p = 0.46), -1 (p = 0.46), 0 (p = 0.26) and 2 (p < 0.06).

Thus, H3.6 was partially supported. Approximately half of the participants agreed that the

robot should explain the behavior by saying the same thing as a human would (53%, Figure 9 left).
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Figure 10: Two summarization aspects (green lines indicate median values). Detailed: While 35%
participants (1 & 3) agreed explanations should be detailed, almost half of the responses (-2, -1, 0,
2) may happen at random. Summarized: 72% participants preferred explanations to be concise.

But only one-third of participants agreed they should explain in the same way (35%, Figure 9 right).

More than one-third of participants who indicated that the robot should explain in a different way

than a human may have happened by chance (43% and 42% respectively).

3.4.6 H3.7, H3.8: Detail, summarization and follow up questions

Cronbach’s alpha reports−0.57 on the three summarization questions with the first being reversed,

but 0.65 (acceptable with a large sample) with the first question dropped, suggesting the first ques-

tion may be measuring an independent metric – detailed – and the last two questions for another

metric – summarized.

Explanation detail Similar to the human-robot difference question, we ran a chi-square goodness-

of-fit test on the responses to the first question, indicating a statistically significant difference

(χ2(6) = 118.07, p < 0.0001) between responses. Post-hoc binomial tests with Holm-Bonferroni

correction for pairwise comparisons show statistically significant differences in -3 (p < 0.0001), 1

(p < 0.0001), 3 (p < 0.0001) but not in -2 (p = 0.99), -1 (p = 0.99), 0 (p = 0.28) and 2 (p = 0.99).

Thus, at least 35% agreed that explanations should be very detailed, shown in Figure 10 left. How-

ever, the fact that there were four Likert scale points not being statistically significant may imply

that almost half (47%) of participants may not have been certain about the need for detailed expla-
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Figure 11: The most wanted robot explanations (Top categories regarding explanation content).
The top one is why the robot failed to hand the cup.

nations.

Explanation summary We calculated an unweighted average score from the responses to the

last two questions to achieve a composite score. A chi-square goodness-of-fit test was performed

and indicates a statistically significant difference (χ2(6) = 281.06, p < 0.0001) and Post-hoc

binomial tests with Holm-Bonferroni correction show statistically significant differences in all

(p < 0.0001) but not in 0 (p = 0.16). In summary, 72% participants preferred explanations to be

concise, with only 11% disagreeing, shown in the right of Figure 10.

Level of verbosity We performed a multinomial goodness-of-fit test on the responses, which

reveals statistical significance (p < 0.0001). Post-hoc binomial tests with Holm-Bonferroni cor-

rection for pairwise comparisons were performed and show significant differences in all levels

(p < 0.0001). As shown in Figure 7 right, 75% preferred “Only A Few (1 to 3)”.

Thus H3.7 and H3.8 were supported. Participants preferred that the robot’s provided expla-

nation be a summary as opposed to being detailed, and they preferred fewer follow-up questions

as opposed to more.
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Figure 12: The most wanted robot explanations across conditions (Most frequent categories re-
garding explanation content across conditions). An explanation for why the robot failed to pass the
cup is common in all conditions. Please see Section 3.4.7 for other categories.

3.4.7 Additional analyses: Explanation content

We coded the open-ended comments on what should be explained and grouped them into multiple

categories. An independent coder coded a random sample of 10% of the participant data and

the experimenter coded all responses. After merging codes with similar meanings, we achieved

a Cohen’s κ value of 0.78, considered substantial agreement between raters by [101]. Figure 12

shows those conditions in which at least 6 participants (approximately 10% of participants in a

given condition) endorsed the coded category. Figure 11 shows the data without conditions.

Common to all conditions except for the Look with Headshake condition (31% participants),

around half of the participants (39% to 59%) wanted the robot to explain why it failed to pass the

cup (pink bars in Figure 12): No Cue without Headshake: 59%, No Cue with Headshake: 44%,

Look without Headshake: 44%, Look & Point without Headshake: 44%, Look & Point with

Headshake 39%).

For the Look with Headshake condition (top middle in Figure 12), people were more spe-
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cific, with 46% participants asking why the robot disobeyed them by shaking its head (purple in

Figure 12). This perception of defiance also held for 34% of the participants who were in the No

Cue with Headshake condition (top left in Figure 12).

Perceptions of the robot acting defiantly were not shown for the Look & Point condition

because arm movement likely indicated that the robot obeyed, but 36% in the Look & Point without

Headshake (22) and 25% in the Look & Point with Headshake (15) conditions were confused about

arm movement intention (cyan in Figure 12) and only 6 participants in total (Look & Point with

Headshake) explicitly expressed a desire for the robot to say that it could not reach the cup.

For No Cue execution conditions, why it dropped the small toy robot that Baxter was

holding onto the desk (sky-blue in Figure 12) and why it shook its head (brown) were mostly

questioned in the No Cue without Headshake condition (46%, 28) and the No Cue with Headshake

condition (26%, 16) respectively. With an additional cue like head-turning or arm movement but

not Headshake, the percentage of participants who wanted to know why the small toy robot is

dropped decreased to 18% (11) in the Look without Headshake condition and disappeared in the

Look & Point without Headshake condition. With Headshake (No Cue with Headshake, Look with

Headshake, Look & Point with Headshake), no participants wanted to know why the robot dropped

the small toy robot Baxter was holding onto the desk. Except for the No Cue with Headshake

condition where Headshake was the only motion cue, no participants wanted to know why the

robot shook its head.

For general explanations, around 10% participants wanted explanations for the robot’s ac-

tions, mostly current actions, in each condition (No Cue without Headshake: 13%, 8; No Cue with

Headshake:15%, 9; Look without Headshake:10%, 6; Look with Headshake:18%, 11; Look &

Point with Headshake: 20%, 12) except for the Look & Point without Headshake condition where

explanations for the arm movement intention were more desired. Being related, participants in

the Look without Headshake (30%, 18) and Look & Point without Headshake (10%, 6) conditions

wanted explanations for the robot’s intended actions. Lastly, when there were no motion cues (No
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Figure 13: Most frequent coded responses for why participants want the robot to explain (i.e.,
explanation reasoning). Two of them are endorsed by more than 20% of participants: the robot
should explain because its behavior does not meet their expectations, and in order to confirm the
robot will do the task, will do it correctly, and whether it is capable of finishing the task.

Cue without Headshake) or just head turning (Look without Headshake), 10% (6) and 18% (11)

wanted confirmation of the participant’s request from the robot respectively.

3.4.8 Additional analyses: Reasoning behind explanation content

Similarly, we also coded participant comments on why the robot should explain. This question

was asked immediately after the explanation content question.

Figure 13 shows the top 23 most frequently coded responses to the “Why the robot should

explain” open-ended question, that appeared more than 6 times, i.e., 10% of participants. Figure

14 shows the same data but across conditions.

Ninety-eight (26.8%) participants wanted the robot to explain because the handover failure

did not meet their expectations. While there were around 20 cases for No Cue conditions (both
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Figure 14: Top codes for explanation reasoning across conditions. Please see Section 3.4.8 for a
detailed analysis.

55



without Headshake and with Headshake) and the Look condition with Headshake, there are only

around 10 for the Look condition without Headshake and both Look & Point conditions.

By comparing the No Cue and Look conditions, we found that participants expected the

robot to turn its head towards the cup (Look without Headshake) but without a Headshake, which

explains why the count for the Look without Headshake condition is lower. The takeaway here is

that participants set expectations of successful handovers from the robot after their request,

and the robot should have explained when it could not meet those expectations.

By comparing the Look and Look & Point conditions, the additional arm movement does

not lead to any change when there is no headshake, but the count reduces by half with a headshake.

However, the reason why more participants want the robot to explain itself is to fix the robot or the

second composite code, revealing how problems are perceived. The takeaway here is that when

the robot cannot complete the task yet exhibits some unclear behaviors without explanation,

participants interpreted them as problems and that the robot needed to be fixed14.

For other provided reasons, the differences are not large across conditions, usually within

5–10, so we will not discuss them per condition below.

As seen in Figure 13, the second most frequent response by 81 participants (22.1%) was

a composite one: Confirm | Correct | Capable, indicating that the robot should explain in order

to confirm it will do the task, will do it correctly, and whether it is capable of finishing the task.

Around 51 participants (13.9%) expressed general reasoning: robot explanation helps them better

understand the robot. Interestingly, in the fourth composite response: Fix | Troubleshoot | Help |

Get Fixed, 42 participants (11.5%) expressed interest in solving the problem of the robot, either by

themselves or by contacting the manufacturer of the robot. Related to this, we found 21 participants

(5.7%) who stated that if the robot explained that the participant was the cause of the problem that

they would like to adjust their own actions to help the robot complete its tasks, which are coded as

Human-Correction | -Correctness.

14Due to the open-ended nature, we did not find the same evidence in the 2020 Study.
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Due to the open-ended nature of the question, all other themes found in the responses were

fragmented and limited to less than 10% of participants. Some interesting reasons included under-

standing the decision-making process of the robot (34 participants, 9.3%), and being able to solve

future problems after understanding current problems (21 participants, 5.7%). If these options are

given explicitly, e.g., in a forced-choice question, more participants may choose them.

3.5 Replicating The Study To Verify Results

To validate the robustness of the results, we conducted a strict replication of the study. We launched

the study again on MTurk, following the identical procedures reported above. The original study

was conducted in August 2019 (“2019 Study”), and the replication was conducted 15 months

later in November 2020 (“2020 Study”). Due to the ongoing COVID-19 pandemic, our ability to

conduct in-person human subjects studies has been limited as in many other research labs. We thus

were unable to replicate the study in a laboratory setting.

We aimed to recruit an identically sized sample as the 2019 Study from MTurk following

the same procedure. For the 2020 Study, MTurk workers who participated in the 2019 Study

were excluded from participation. While reviewing the responses to the attention check questions,

we also found that 38 participants gave suspect answers to the question asking about explanation

content. Specifically, they provided a full or partial copy of the definition of what a robot is and

how it works from top web search returns including Wikipedia. We decided to exclude these

participants’ responses, as the answer was non-responsive and suggested either the person was not

paying close attention or a bot may have been filling out the survey. Given this change to our

attention check questions, we went back to the data from the 2019 Study, as we described before

its analysis.

After employing the same screening procedures as the 2019 Study, including removing

participants who gave suspect answers noted above, we trimmed the dataset to provide an equal

number of participants in each of the 6 experimental conditions and to match the size of the 2019
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Figure 15: Top categories regarding explanation content (replication results from the 2020 Study).
The top one remains unchanged.

Study sample. Due to this process, we again had data fromN = 366 participants, which is included

in subsequent analyses.

The demographics of the final sample for the 2020 Study were very similar to the 2019

Study, with 206 males, 157 females, 1 participant who preferred not to say, and 2 transgender peo-

ple; with ages ranging from 20–69, M = 36, median = 33, skewness = 1.05. 101 participants

(28%) agreed with the statement, “I have experience with robots,” 191 disagreed (52%), and 74

(20%) responded that they neither agreed nor disagreed.

After following identical analysis procedures as with the 2019 Study data, we found that

the 2020 Study replicated all of the 2019 Study findings except for the Unexpectedness score of

the Look & Point with Headshake condition. As seen in the top right subfigure in both Figure 64

and Figure 65, we no longer found any significant difference (was p < 0.01 for the 2019 Study)

between the mean estimate of responses and 0 (used to code neutral responses).

We placed all of the figures for the 2020 Study and the 2019 Study side by side in Appendix

A for easy comparison and to document the few minor statistical significance changes in findings

regarding Hypotheses H3.1-H3.8 between the two studies.
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Figure 16: Most frequent categories regarding explanation content across conditions (replication
results from the 2020 Study). Still, the explanation for why the robot failed to pass the cup is
common in all conditions. Please see Section 3.5.1 for other categories.

3.5.1 Additional analyses: Explanation content

As shown in Figure 15 and 16, we were able to draw roughly the same conclusions for explanation

content as in the 2019 Study (Section 3.4.7).

The top explanation that the participants explicitly wanted the robot to provide remained

why it failed to pass the cup (40%). The same as in the 2019 Study, and this finding was common

to all conditions, with a maximum difference of 9 participants (No Cue with Headshake vs. Look

& Point with Headshake): No Cue without Headshake: 45%, No Cue with Headshake: 47%, Look

without Headshake: 33%, Look with Headshake: 42%, Look & Point without Headshake: 48%,

Look & Point with Headshake 33%.

Regarding the explanation for why the robot disobeyed by shaking its head, similar to the

2019 Study, it only appeared for the No Cue with Headshake and Look with Headshake conditions.

With the data about compliance above, the conclusion of our previous analysis still holds:

“Perceptions of the robot acting defiantly were not shown for the Look & Point condition because
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arm movement likely indicated that the robot obeyed.” There were still participants who explicitly

expressed that they would like explanations about the arm movement intention, although the

number dropped from 22 and 15 participants to 12 and 8 respectively.

For No Cue without Headshake condition, why it dropped the small toy robot that Baxter

was holding onto the desk remained to be mostly questioned (19, 32%). While Why shook head

is still the most questioned for No Cue with Headshake condition, its number has dropped from 16

to 10 participants. One new finding is that in the Look with Headshake condition, 11 participants

(18%) were confused about why the robot shook its head. The conclusions given in the second-to-

last paragraph of Section 3.4.7 still largely hold.

For general explanations, there were around 10% of participants who wanted explanations

for the robot’s actions. These participants were roughly evenly distributed in most conditions, but

not in the No Cue with Headshake and Look with Headshake conditions (Figure 16). This differs

from the 2019 Study in which participants did not want an explanation for the robot’s actions in

only the Look & Point without Headshake condition (Figure 12).

For confirmation, there were still approximately the same number of participants who

wanted a confirmation of their request from the robot: no motion cues (No Cue without Head-

shake, 12 participants in the 2020 Study vs. 6 in the 2019 Study) or just head turning (Look

without Headshake, 14 in the 2020 Study vs. 11 in the 2019 Study).

3.5.2 Additional analyses: Reasoning behind explanation content

As shown in Figure 17, that the robot did not meet their expectations remains to be the top reason

behind what to explain, which increased from 98 participants (26.8%) to 113 (30.9%). Across

conditions (Figure 18), there were still only around 15 cases in the Look without Headshake and

more than 20 cases in the No Cue and Look with Headshake conditions. The conclusions given in

the fourth paragraph in Section 3.4.8 still hold.

The composite code “Confirm — Correct — Capable” was still the second-most frequent
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Figure 17: Most frequent coded responses for explanation reasoning (replication results from the
2020 Study). The top two remain unchanged and are still endorsed by more than 20% participants.
For the changes from the 2019 Study, please see Section 3.5.2.

reason, with roughly the same number of participants in the 2019 Study. Forty-seven vs. 27

participants expressed that they wanted to get confirmation from the robot out of an explanation.

The codes “Better Understand” and “Fix — Troubleshoot — Help — Get Fixed” dropped 5.4%

from 40 participants to 20. Due to the open-ended nature, we did not find the same conclusion

earlier about getting the robot fixed. The frequency values for other codes from the 2019 Study are

within around 10 participants each.

3.6 Discussion

Although the data only partially supported H3.1: the Look without Headshake and the Look &

Point without Headshake conditions were considered to be unexpected by participants; we found

that outside of H3.1 on the unexpectedness metric, adding additional non-verbal cues to increase

causal information was not always helpful for meeting participant expectations. Comparing verti-
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Figure 18: Top codes for explanation reasoning across conditions (replication results from the 2020
Study). please see Section 3.5.2 for a detailed analysis.
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Table 3: Summary of evidence or lack thereof for hypotheses (includes data from both the 2019
Study and the 2020 Study)

Hypothesis Result
H3.1. Robot behaviors need to be ex-
plained. In general, robot behavior
will be considered unexpected to peo-
ple, and there will be a desire for it to
be explained.

Partially supported. Results show that the robot
should explain even when participants rank its
behavior as neither expected nor unexpected (i.e.,
neutral) in the Look without Headshake and Look
& Point without Headshake conditions.

H3.2. As more causal information
about robot behavior is provided, there
will be less need for an explanation
from the robot.

Not supported. The perceived need for explana-
tion did not drop with more causal information.

H3.3. Adding a headshake to the
robot’s explanation will result in less
need for an explanation.

Not supported. The addition of the Headshake
cue did not result in less perceived need for ex-
planation.

H3.4. Explanations offered at multiple
points in time will be desirable.

Not fully supported. More participants (53%)
preferred in-situ explanations, fewer (18%) pre-
ferred a-priori, yet no statistical difference was
found for explanations in the end.

H3.5. Engagement prior to providing
an explanation will be important.

Supported.

H3.6. Similarity to human explanations
will be expected.

Partially supported. Half of the participants
agreed that robots and humans should say the
same thing, but only one-third of participants
agreed they should explain in the same way.

H3.7. Summarization will be preferred. Supported.

H3.8. Fewer number of follow-ups will
be preferred.

Supported.
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cally in Figure 64 for the 2019 Study and Figure 65 for the 2020 Study, the addition of the Head-

shake without any verbal explanation made the robot’s behavior unexpected (Look with Headshake

vs. Look without Headshake in the 2019 Study and the 2020 Study), equally unexpected (No Cue

without Headshake vs. No Cue with Headshake) or more unexpected only in the 2019 Study (Look

& Point without Headshake vs. Look & Point with Headshake).

Although the addition of head-turning in the Look condition did decrease the unexpected-

ness ratings over the No Cue condition in the 2019 Study but not in the 2020 Study (compare the

left two columns of Figure 64), the inclusion of arm motion in the Look & Point condition failed

to make the robot’s behavior less unexpected than the Look condition – the unexpectedness either

increased in the 2019 Study (compare the right two columns of Figure 64) or was not significantly

significant in the 2020 Study (compare the right two columns of Figure 65).

In contrast to H3.2, we found that in both the 2019 Study and the 2020 Study, increasing

causal information by adding more non-verbal motion cues did not increase the need for robot

explanations. Rather, the need was always desired regardless of what non-verbal cues were being

used (partially confirms H3.1). Together with the explanation content responses, more non-verbal

cues such as head shaking or arm movement did not seem to decrease the need, but simply led

participants to seek additional specific explanations for those cues.

The assumption that the addition of a headshake would lead to less need for explanation, as

hypothesized in H3.3, did not hold. In the comments on explanation content, participants reported

being confused about the robot’s headshaking behavior: instead of perceiving the robot as unable

to take the cup, the headshake was considered as a sign that the robot was disobeying many of the

participants (the most frequent category in the 2019 Study and second-most in the 2020 Study),

when additional arm movement was not present. This confusion may explain why H3.3 was not

supported. Even though we limited our recruitment on MTurk to people living in the United

States, cultural difference, especially concerning the meaning of a headshake, may be another

factor affecting the perception.
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Confusion also existed for the Look & Point execution conditions, with some participants

not understanding the intention of the robot’s arm movement. This suggests that non-verbal be-

haviors such as head-shaking and artificial yet unpredictable human non-verbal behaviors such as

repeated reaching arm movement without explanation may fall short of being clear methods for

trying to provide in situ motion-based implicit explanations.

For the properties of robot explicit explanations, participants wanted robots to explain as

unexpected things happened. However, we saw explicit requests for a running commentary of the

robot’s behavior by 4 participants in the 2019 Study and 3 participants in the 2020 Study. Similarly,

while participants preferred the robot to get their attention by looking at them, 30 participants in

the 2019 Study and 19 in the 2020 Study explicitly opted for the robot to address them specifically.

Surprisingly, results showed that there was no desired difference between robot and human

explanations, rejecting H3.6. However, most non-agreement responses to the difference between

robot and human explanation items were not of statistical significance (Figure 88 for the 2019

Study and Figure 89 for the 2020 Study), nor were most participants’ responses to the detailed

aspect in summarization (Figure 91 for the 2019 Study and Figure 92 for the 2020 Study). Also,

the distributions shown in Figure 88 for the 2019 Study and Figure 88 for the 2020 Study are

very similar, suggesting that people may not differentiate what and how robots explain. Additional

investigation, with multiple questions to improve reliability, would be needed to lend more clarity

to these findings. In addition to the arm and head movement, (i.e., non-verbal motion cues), future

work should also include exploration to learn if eye gaze or facial expression would be unexpected

and how they would affect perceptions of robot explanation.

3.7 Limitations and Future Work

In the experiment, we focused on robot explanations for failures that occur shortly after a person’s

request, using the example of handover interaction. This timing is important because early failures

prevent the whole process from happening and early failures have been shown to decrease a per-
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son’s trust in a robot system [46]. While seemingly simple, the handover interaction was chosen as

it is expected to be a frequent interaction among humans working in physical proximity to robots.

However, due to the timing of our work and the global pandemic, no in-person or physical interac-

tion was involved in this study (i.e., transferring the object to participants). Further investigation is

needed for physical proximity and contact between humans and robots, and for different contexts

and tasks other than handovers, likely using in-person studies, although this work has demonstrated

that consistent results can be attained through online studies.

In addition, while we aimed to have our findings generalize to the general public, pref-

erences are inherently subjective, influenced by culture, and individual differences exist. Thus,

adaptive explanation to individuals is of interest and needs more investigation but is out of the

scope of this work. As we have only used the Baxter robot with a slightly smiling face and mod-

erate human-likeness, future work could further investigate how different robot designs impact

participant expectations for robot explanation.

Knowing people’s preferences for robot explanations paves the way to explanation genera-

tion. In our parallel work [82], we proposed such algorithms to generate shallow explanations for

only a few follow-up questions, informed by the summarization and verbosity preferences. Cur-

rently, we are investigating the effects of verbal explanation mixed or not mixed with non-verbal

projection mapping [83] cues, informed by the engagement and timing preferences, i.e., addressing

humans in situ.

3.8 Conclusions

We have investigated desired robot explanations when coupled with non-verbal motion cues. Re-

sults suggest that robot explanations are needed even when non-verbal cues are present, in most

cases where the robot is unable to perform a task. The robot needs to get the attention of the person

and then concisely explain why it failed and its other behaviors in situ, in a similar way to what

humans would expect other humans to do. We are able to make the same conclusion in a strict
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replication study after 15 months, providing stronger evidence for our findings.

With these results, the next chapter will detail how we generate concise explanations and

follow-up explanations to answer a few questions.

67



4 Explanation Generation Using Behavior Trees15

4.1 Introduction

As robots are pushed by researchers and the industry to complete more complex tasks, improving

the understanding of a robot’s behaviors is becoming increasingly important. Prior work in human-

robot interaction (HRI) has shown that improving understanding of a robot makes it more trust-

worthy [46] and more efficient [7]. To increase human understanding of robots, HRI researchers

have mostly explored non-verbal physical behavior such as arm movement [56, 100] and eye gaze

[118]. Such non-verbal behaviors can help people to anticipate a robot’s actions [102], but do

not provide insight into why the robot chose those actions. Direct explanations of why certain

behaviors occurred can further improve one’s prediction of behaviors [108]. Thus, robots need to

explicitly explain their own behavior, similar to verbal human explanations.

Previously, we proposed a holistic blueprint of a robot explanation generation system con-

sisting of three components: state summarization, data storage and querying, and a human in-

terface [80]. The state summarization component is responsible for generating varying levels of

summaries, either manually or automatically from different robot states, while performing tasks or

from the stored states in introspection. In this work, we focus on the manual generation of high-

level explanations, for situations where robot programmers want to consider possible explanations

to create more transparent robot systems as they program the functionality of the system.

We explore action sequence methods for task specification and execution as the foundation

for robot explanation generation. Specifically, we base our work on Behavior Trees (BTs), which

is a tree structure that encapsulate behavior by control nodes that contain child execution nodes.

BTs [40] are a popular way to model the behavior of AI agents in the gaming industry (e.g.,

[103, 141]), but have also gained momentum in robotics, where they are used for end-user robot

programming [133], deployed on a Rethink Robotics Sawyer robot [40], and applied to Learning

15This chapter appears in a paper [82] jointly authored with Daniel Giger, Jordan Allspaw, Michael S. Lee, Dr.
Henny Admoni, and Dr. Holly Yanco. Please see Publication 4.
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from Demonstration [65] and navigation [107].

As we will discuss in Section 2.3, BTs have the advantages of modularity, reusability, and

scalability, over more traditional state machines. Behavior nodes, the basic structure of BTs, are

both modular and reusable, which allows the system to scale while maintaining fewer unique

modules [40]. In contrast, states in state machines are tightly coupled and do not scale well to

more complex tasks, due to intertwined transitions. This is especially relevant for situations in

which different tasks are interconnected and involve multiple steps.

Some of the disadvantages of BTs include the fact that they are free-form and static. As a

counterexample of being unconstrained, robot behaviors can still be specified in a very deep tree –

making the resulting BT hard to justify and natively unsupportive for generating hierarchical robot

explanations of shallow depth, similar to their human counterparts. And being static, BTs lack

the ability of dynamic modification (e.g., existing behavior insertion). This disadvantage limits us

from inserting an explanation represented by a self-contained partial tree.

To solve these problems, we frame BTs in semantic sets with a goal structure so that they are

better suited for hierarchical robot explanation. We also propose explanation generation algorithms

for the framed BTs, as well as an algorithm to create a self-contained behavior node that can then

be dynamically inserted.

Additionally, we ground our framing structure and proposed algorithms with a multi-task,

multi-step mobile manipulation kitting task. In this kitting task, a mobile manipulator robot as-

sembles a kit of gearbox parts by navigating in a confined environment and collecting differently-

shaped, irregular parts (Figure 19 in Section 4.3.1) from different stations. It also involves a peg-

in-hole large gear insertion task for machining a large gear. By first modeling this kitting task,

consisting of many different subtasks, using BTs, we show the strength in execution and richness

of expression of BTs, in addition to its simplicity and friendliness for non-roboticists, as argued in

[40] and shown by [134]. We also demonstrate the application of our work to a non-manipulation

task, the taxi domain [53].
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The primary contributions of this chapter are threefold:

1. We first model a complex kitting task in BTs to show robot developers that BTs are capable

of specifying complex high-level robotic tasks while not losing simplicity.

2. Given that BTs can be deep, we frame BTs into semantic sets and contribute algorithms to

generate hierarchical explanations, taking the node types in BTs into account.

3. We make the static BTs dynamic so self-contained behavior nodes can be inserted dynami-

cally as a subgoal, as a member of the semantic set.

To validate the framing structure and proposed algorithms for explanation generation, we

evaluate them on two diverse tasks, the first involving robot manipulation and the second involving

navigation planning. The first task includes the large gear insertion subtask of the kitting task,

in addition to the screw picking and placing subtasks that we used throughout this work to give

readers a concrete idea about our work in the early phase. The second task involves a taxi rout-

ing problem that attempts to optimize an agent’s navigation path while completing subtasks like

picking up and dropping off a passenger. By evaluating our explanation generation algorithms in

these two different tasks, we demonstrate the algorithms’ generalization to domains with differing

complexities and actions.

To the best of our knowledge, this is the first work on using behavior trees for explanation

generation. We conclude with a discussion of this work, including its limitations and ideas for

potential future work.

4.2 Background: Formulation of Behavior Trees

Behavior Trees have previously been used for gaming agents but have gained momentum in the

robotics community during the last few years [110, 76, 39, 40, 135]. In this section, we borrow

from the previous work to formulate Behavior Trees using a simplified yet complete set of nota-

tions.
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A behavior tree T = {C,E,Edges } is an ordered rooted tree where control flow nodesC =

{Sequence, Fallback, Parallel,Decorator } are internal or non-leaf nodes that have children

nodes, and execution nodes E = {Action, Condition } are external or leaf nodes. Control flow

nodes can have control flow or execution nodes as their children whereas execution nodes are

execution units that do not have any children.

Execution starts or ticks from the root node of the tree. Control flow nodes route the ticks to

its children until the execution nodes returns a status s ∈ S = {RUNNING,SUCCESS,FAILURE }.

The status of a control flow node depends on one of its descendant nodes.

A sequence control flow node, indicated by “→” executes each of its child nodes sequen-

tially. The sequence returns SUCCESS only if all of its child nodes return SUCCESS, and returns

RUNNING or FAILURE if any of its children returns such status.

A fallback control flow node, denoted by “?”, also executes its children sequentially but only

requires one child node to succeed in order to return SUCCESS. If a child node returns FAILURE,

the fallback node will tick its next child until SUCCESS or FAILURE. If all of its children return

FAILURE, the fallback node returns FAILURE. Similar to the sequence node, it returns RUNNING

if any of its children returns such status. The fallback node type is also known as a selector.

A parallel control flow node, labeled as “⇒”, executes all of its children simultaneously or

the children are all asynchronous themselves. Otherwise, the parallel node has the same control

logic as a sequence node. Callers can specify thresholds to make the node return SUCCESS or

FAILURE when a certain number of children nodes returns one of the statuses.

A decorator control flow node, often represented with a diamond shape, can only have one

child. It applies a function f to its child to manipulate the returned status. Examples include an

inverter node that negates its child’s status and a retry node that ticks its child N times as long as

a FAILURE status is returned.

Usually boxed, an action node is an execution unit that runs a piece of code. It returns

SUCCESS upon successful completion and FAILURE if it is impossible to complete. RUNNING
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Table 4: Classical Behavior Tree (BT) Formulation: Nodes and Return Statuses. (Adapted from
[40])

.
Notation Node Node Type s = SUCCESS s = FAILURE s = RUNNING

→ Sequence

Control

All children→ s Any child→ s Any child→ s
? Fallback Any child→ s All→ s Any child→ s
⇒ Parallel M children→ s N −M children→ s Any child→ s

Diamond Decorator Function f → s Function f → s Function f → s

Boxed Action
Execution

Self→ s Self→ s Ticking
Circled Condition Self→ s Self→ s -

is returned during execution.

Often circled, a condition execution node checks whether a state is met, making it a special

case of the action node. However, it does not return the RUNNING state; otherwise it functions the

same as an action node.

Table 4 lists all the nodes and their returned states.

4.3 Modeling Robotic Tasks using Behavior Trees

Even though the BT method is relatively simple, which makes it easy to understand for non-

roboticists as previously mentioned [134], it does not mean that BTs are incapable of representing

complex tasks or to execute those tasks. In order to demonstrate the execution model and the

expressiveness of BTs, we now describe a real-world scenario of a complex gearbox kitting task

and how one can represent tasks in BTs. We will refer this task when we describe how we use BTs

for robot explanation.

4.3.1 The Gearbox Kitting Task

The gearbox kitting task is a challenging task designed for the 2019 FetchIt! Mobile Manipula-

tion Challenge16, organized by Fetch Robotics and held at the IEEE Conference on Robotics and

16https://opensource.fetchrobotics.com/competition
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(a)

(d)

(b) (c)

(e)

Figure 19: Parts to be collected: (a) Large gear (b) Gearbox
top (c) Gearbox bottom (d) Screw (e) Small gear. Note that
the large gear (a) is meant to be machined to have threads;
the large gear must be inserted into a machine for this pro-
cess to occur.

Figure 20: Assembled gear-
box using the required me-
chanical parts that the robot
placed into the caddy and de-
livered to the inspection ta-
ble.

Automation (ICRA) in May 2019. In this competition, a Fetch mobile manipulator robot [170],

which has a single chest-mounted 7 DoF arm with a torso lift joint and a head-mounted RGBD

camera, needed to be programmed to assemble as many kits as possible. Kit assembly is achieved

by navigating to different stations to pick a specified number of complex, irregular mechanical

parts including screws, gears, and gearbox container parts (Figure 19), placing them into specific

compartments of a caddy, and finally picking the full caddy up and delivering it to the inspection

table for final gearbox assembly by factory or warehouse workers. The robot needs to first collect

two screws from a bin as well as one each of a large gear, small gear, gearbox bottom, and gearbox

top piece. We described our efforts to address the challenges present in this task in [79].

While the robot can complete the kitting task alone, the ultimate goal is to apply it to a

collaborative scenario where one or two workers stay at the inspection table to inspect and perform

the fine motor skills to assemble a functional gearbox (Figure 20) from the parts that the robot

collected, requiring human-robot collaboration.

This human-robot collaboration scenario provides the tasks and the environment for a rea-
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Screw

Caddy Small
Gear

Large
Gear

Gearbox
Top

Gearbox
Bottom

Inspection
Table

Figure 21: The arena where the gearbox kitting task is carried out by a Fetch robot. Rendered in
Gazebo, the main goal is to place a specified set of parts into the correct sections of the caddy, then
to transport the caddy to the inspection table.

sonable testbed. Because there are several opportunities for unexpected or opaque events to hap-

pen, where a human may want to ask for a robot to explain itself.

For example, a common occurrence is that the Fetch robot may not be able to grasp a caddy

or a gearbox part if it is placed too close to a wall. Fetch’s arm may not be long enough to reach

given the constraints presented by the end-effector orientation (it must be pointed down in order

to grasp the caddy) and standoff distances imposed by the dimensions of the tables. This scenario

is not apparent to novice users or bystanders who do not have intimate knowledge of Fetch’s

characteristics. Even for roboticists, forming an inaccurate mental model of the robot from time to

time is still possible. In such scenarios, Fetch should initiate an explanation to inform the user.

Another common occurrence is confusion when differentiating between two gearbox parts

that appear similar in height via point cloud due to sensor noise. This can make the object detection

fail, causing the robot to grasp the incorrect object. In this scenario, a human might initiate a robot

explanation, as the robot may not be aware that it performed incorrectly.

Finally, a human-initiated robot explanation might also be needed when the robot stops at
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a different location in front of the caddy table than what was expected, and places a part into the

incorrect caddy. This could occur due to navigation error range and the narrow horizontal field of

view (54◦) of its RGBD camera, which may cause part of the caddy to be occluded.

While scoped for a manufacturing environment, the same types of tasks are relevant to home

environments (e.g., navigating between areas in a narrow hallway kitchen and a dining table, and

manipulating objects in these places).

In this paper, we focus on human-initiated high-level robot explanation.

4.3.2 Revised Notation for Behavior Trees

To visualize Behavior Trees, we adopted the Groot software17 and its notations. In contrast to the

classical BTs notations summarized in Table 4, a subtree node is added. Every node is boxed to

accommodate more text descriptions instead of a single word.

Text color is used to differentiate node type and custom decorator nodes on a dark gray

background. For control nodes except for decorators, pink and blue indicate sequence and fallback

respectively. For execution nodes, white and green indicate action (A) and condition (C) nodes.

Because a decorator node is attached with a custom function f , they have different colors.

The subtree node can only have one child, similar to a decorator node, and is denoted by a

tree hierarchy icon. Indeed, it can be deemed as a special case of a decorator with the function f

simply doing nothing but ticking its child.

Table 5 shows the revised notations including the new subtree node and the color codes.

4.3.3 Modeling Using Behavior Trees

Figure 22 shows the top level of the gearbox kitting task represented as a BT where each subtask

is encapsulated in a subtree. To improve the readability of the tree in this paper, all subtasks were

left collapsed in the figure.

17https://github.com/BehaviorTree/Groot/
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Depth 0 ↑

Depth 1 →

Figure 22: The top level of the gearbox kitting task represented as a sequence of subtrees in a
Behavior Tree. For readability, six tasks – go {pick — place} {small gear — gearbox top —
gearbox bottom} – are represented by “. . . ”. Note that the root node on the top is merely a pointer
to the real root node in the middle, which is why depth 0 is at the sequence node.
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Table 5: Notation of and changes to Behavior Trees as used in this chapter
Symbol Color Node s = RUNNING

White Subtree Child→ s

→ Pink Sequence Any child→ s

? Blue Fallback Any child→ s

Varies Decorator Function f → s

White Action (A) Ticking
Green Condition (C) Ticking

Figures 23 and 24 illustrate the specification of two representative subtasks in the kitting

task using BTs: picking a screw placed in a bin on the table and placing a screw into a specific

caddy compartment (See Figure 21 left and top). Other tasks in the kitting task are similar and

can be represented in the same way, thus highlighting the modularity and reusability of BTs by

reusing existing tree nodes. For example, picking gearbox tops/bottoms and large/small gears are

similar to screw picking. Placing those parts into a caddy is the same as placing a screw into the

caddy except that the compartment is different. If you compare Figures 23 and 24, more than

half of the nodes are reused. However, machining a large gear is a unique task. We visualize

it in Figure 27 and will discuss in Section 4.7 during evaluation in hope of generalization. The

examples demonstrate every type of node in both the control and execution categories except for

the parallel node. “RetryUntilSuccesful” and “ForceFailure” are two types of decorator nodes.

As illustrated in Figure 23 and 24 as well as Figure 27 to be seen later, each node is visu-

alized with its node ID on the first line, node name on the second line, and input and output (I/O)

ports following. Custom nodes can register their own IDs and are mostly at the leaf level (i.e.,

action and condition nodes). Node names are not needed for registration and only used when the

node is reused to clarify the robot behavior it represents.

With the built-in nodes listed in Table 5 and registered custom nodes, the whole tree, includ-

ing descriptive names and I/O ports, is specified in an XML file which is then parsed for execution

or visualization. As an example, the bottom right action node in Figure 23, retreat arm, has
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the ID of “retreat arm” and an empty name because the ID shows the specific behavior that the

node represents. At the same level, the “reach” node is reused 3 times and assigned a name each

time to differentiate each other. As we will see later during explanation generation, the node name

plays an important role as it can represent the robot behavior.

Input and output ports are the light gray fields filled with string values. Similar to the

previously mentioned SMACH [23], these ports are designed to be data-driven and passed around

between nodes to share data. Input ports can be specified by a literal value or a dynamic key, while

output ports, named “output”, can only be keyed. For example, the top right action node in

Figure 23, “convert to grasp pose”, has a “from” input port with a “{object pose}”

key and a output port with a “{grap pose}” key. Each tree or subtree maintains a key-value

dictionary to store outputs resulted from some nodes and to be used by other nodes in the tree or

subtree. If subtree nodes are used, each dictionary is scoped within the subtree to avoid naming

space collision for the keys and be easy to reason about.

4.3.4 The Screw Picking Subtask: Tree Breakdown

As visualized in Figure 23, the go pick screw task starts as a fallback node (depth 2), which

ticks the sequence node with the same name. If the sequence node fails, the ask node will be

executed to ask humans to intervene. In the children of the sequence node (depth 4 and 5), a

robot will first move to screw station and, if unsuccessful, retry three times. Then the

robot will detect screw and pick screw, and retry up to three times until successful. A

sequence node with an empty name (depth 5) is needed as the RetryUntilSuccessful node

is a decorator node which can only have one child. To detect screw, the robot needs to lift

torso, look at table, and detect screw which outputs object pose of the screw.

A fallback node is used to pick screw (depth 6) so, when the sequence of pick screw

failed, the robot will reset arm (depth 7 bottom) before retrying (the second child at depth 4).

To pick screw, the robot will run all execution nodes at depth 8. For the action node of allow
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partial collision, it will crop a 4mm cube at object pose with 3mm padding from the

collision scene, allowing the gripper to collide with the detected screw.

The go place screw task in Figure 24 can be broken down in a similar fashion. Note

that this screw placing task shared a considerable amount of sequence and action nodes, illustrat-

ing the modularity and reusability advantages of using BTs again. Thanks to this, once the first

behavior tree is coded, similar tasks can be easily encoded in behavior trees using existing nodes.

4.4 Framing Behavior Trees for Hierarchical Explanation Generation

Behavior Trees are a free-form action sequence specification and execution tool that only provides

a preset of control nodes with simple control flow algorithms, imposing a minimum amount of

structural rules. This structure provides ultimate flexibility for robot or AI developers to program

behaviors for different application needs or use cases, such as the manipulation tasks in this paper.

However, to provide concise, multi-level explanations [80], we propose to frame BTs for

hierarchical explanation generation, given the experience from implementing the subtasks in the

kitting task with BTs.

The behavior tree of a multi-task, multi-step task can be simplified and decomposed into a

set of semantic sets:

{goal, subgoals, steps, actions}.

To give a concrete understanding, now we examine the kitting task tree. As shown in Figure

22, the goal is to build a gearbox kit and its subgoals are all of the leaf nodes. A subgoal

can be further broken down into steps, which can be nested to span more than one level or as

shallow as a flat one-level tree. Finally, the ending steps consist of a set of actions (i.e., execution

nodes).

Figure 25 and 26 shows the framed behavior trees of the screw picking and placing subtasks.

The framed tree can be generated by ignoring decorator nodes and the control nodes that have a
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    Subgoal                        Steps                                      Actions

Figure 25: Simplified, semantic sets for the screw picking subtask. The goal is not shown here as
Figure 22 is sufficient without any simplification.
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    Subgoal                             Steps                                  Actions

Figure 26: Simplified, semantic sets for the screw placing subtask.

child sharing the same name. For example, all RetryUntilSuccessful decorator nodes are

ignored, and the fallback nodes at depth 2 and 6 are also ignored (see Figure 23). Note that the

move to node is a special case of a step, which reveals that a step does not have to be a control

node.

Compared to the original behavior trees in Figure 23 and 24, the hierarchy is much simpli-

fied and more clear, making it more suitable for explanation generation. Section 4.5.2 details the

generation algorithms that used the framed trees under the hood.

4.5 Algorithms on Behavior Trees for Robot Explanation Generation

Behavior Trees are a static action sequence method. Once created, it does not allow for the dy-

namic addition of behavior nodes. BTs are also not designed to be interactive. The behavior tree

associated with a task might be presented on a display screen for introspection, but when an end-
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Algorithm 1: Answer “What are you doing?” (Q1)
Input: Node n (Current node in execution)
Output: String answer

1 p.short description← if p.has name then p.name else p.ID end;
2 return ”I ” + p.short description + ”.”;

user asks what part of the task the robot is attempting to finish or why the robot is doing its current

sub-task, it is unknown how to query at different nodes or what should the robot reply given differ-

ent functions of different types of node. To solve this issue, we propose the following algorithms.

All the pseudo-code is derived from our C++ implementation using the BehaviorTree.CPP

library18. The C++ implementation is available on GitHub19.

4.5.1 Supporting Querying Current State

Because any BT node returns a status s ∈ S = {RUNNING,SUCCESS,FAILURE } and condition

nodes do not return a RUNNING state, we reintroduce the RUNNING state back to condition nodes

in order to know which node is currently running. This change is reflected in Table 5.

This change is necessary because robots operate in the real three-dimensional world in

which completing a checking task is more time-consuming than checking a condition in a virtual

world. Behavior Trees are popular in the gaming industry, in which inputs are accurate, checks

are fast, and noisy sensors do not exist. On the other hand, it may take time for an embodied

robot to check if a state is reached (i.e., execute the condition node). For example, to check if a

screw in a bin is reachable, it can take a while for sampling-based motion planning methods to

avoid collisions for small object manipulation, especially when the collision objects are further

away and the objects are represented as a number of small units, making the scene representation

time-consuming to search.

Given that every execution node can be in the state of RUNNING, we can use the concept of

18https://www.behaviortree.dev/
19https://github.com/uml-robotics/robot-explanation-BTs
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Table 6: Questions To Be Answered During Hierarchical Explanation
Question Algorithm

Q2 Why are you doing this? Algorithm 2
Q3 What is your subgoal? Algorithm 3
Q4 What is your goal? Algorithm 4
Q5 How do you achieve your { goal — subgoal }? Algorithm 5, 6

a state listener to track which node is ticking. The tracked node with the RUNNING state can then

be used to answer the most basic question: Q1. “What are you doing?” For the sake of showing

all of the algorithms in this text, we include this as Algorithm 1.

4.5.2 Supporting Hierarchical Explanation Generation

Once we have the framed Behavior Trees for hierarchical robot explanation, the context to answer

the questions listed in Table 6 is established by the sets of semantic sets, in addition to Q1.

Compared to Q1, these questions are chosen because humans tend to seek causal knowledge

from explanations [105, 22]. Q2 gives the causal information of Q1. Q3 gives the intermediate

cause while Q4 offers the final cause – “the end, function or goal” [105] and Q5 is designed in the

hope of providing detailed steps to improve understanding. Q1–Q4 are about thinking backward

in term of the tree structure while Q5 is forward-thinking, from left to right.

Note that we do not focus on speech recognition or natural language processing (NLP).

With the underlying algorithms described in this section, one could plug in an NLP framework to

extract the semantic information from the question. In our work, we are also not concerned with

the grammatical correctness of the explanations; we could also add additional language generation

capabilities.

Algorithm 2 shows the steps to answer Q2, reasoning about the current behavior. Lines 1–5

find the non-decorator control ancestor node p of the node in execution n so p has a name and the

name is different from n’s. Note that the short description of a node is described in Algorithm 1:

It is the name of the node n′ if n′ has a name, otherwise the ID of n′.
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Algorithm 2: Answer “Why are you doing this?” (Q2)
Input: Node n (Current node in execution)
Output: String answer

1 p← n.parent;
2 // find a non-decorator ancestor of “n” that has a name different from “n”;
3 while p 6= null or p.type = Decorator or p.has name() or p.short description =

n.short description do
4 p← p.parent;
5 end

6 return ”I ” + p.short description + ” in order to ” + p.name + ”.”;

Algorithm 3: Answer “What is your subgoal?” (Q3)
Input: Node n (Current node in execution)
Output: String answer

1 p← n.parent;
2 while p 6= null and p.type 6= Subtree do
3 p← p.parent;
4 end

5 if p 6= null then return ”My subgoal is to ” + p.name + ”.”;
6 else return ”Sorry. I don’t have a subgoal.”;

Algorithm 3 shows the steps to answer Q3 about subgoal. Lines 1–4 find the subtree ancestor

node of n as the subgoal.

To answer Q4, the goal is simply the name of the root node, as indicated by Algorithm 4.

To answer Q5, Algorithm 5 shows the steps where a depth-first search is performed at the

goal or subgoal node g. In lines 3–6, a descendant node is added to the set of steps if the node

being traversed is not a decorator node, has a name, and does not have the same name as g. Similar

to previous algorithms, Algorithm 6 shows the generated explanation text.

4.5.3 Supporting Failure Explanation Generation

In addition to asking for explanations for the current behavior, explanations from failure handling

are of interest. For example, “Was there anything wrong?”, “What went wrong?”, and “How was

the failure handled?”.
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Algorithm 4: Answer “What is your goal?” (Q4)
Input: Node root
Output: String answer

1 return ”My overall goal is to ” + root.name + ”.”;

Algorithm 5: Find Steps From a Goal or Subgoal Node
Input: Node g (The goal or subgoal node)
Output: Set steps (An ordered set of nodes)

1 steps← ∅
2 DepthFirstSearch: g, f (node)→ begin
3 if node.has name() and node.name 6= p.name and node.type 6= Decorator then
4 steps← steps ∪ {node};
5 do not traverse further;
6 end
7 end
8 return steps;

All those questions can be answered by Algorithm 7, which centers around Fallback and

RetryUntilSuccessful nodes that handle failures. For a Fallback node, when its status is “SUC-

CESS”, we can check whether the first children nodes in its sequence were unsuccessful (line 4),

i.e., to see whether the execution fell back to other child nodes. Those children nodes with “FAIL-

URE” status (lines 7–9) can then be used for explanations of failures, more specifically, what went

wrong (lines 6 and 10–12). For example, in the Fallback node at depth 6 of Fig. 23, if its “pick

screw” child node failed because the “check if grasped” failed, the robot can say “I could not go

pick screw because check if grasped failed.” Potentially, it can be further explained by attaching

information such as perception results and motion trajectories; the latter two can be presented on a

monitor or by a projector.

For a RetryUntilSuccessful decorator node, it can also be used to answer the questions,

especially that the failure is being handled by retries. The relevant code in Algorithm 7 are lines

13–33. Line 13–23 handles the case when the Retry node has started its first attempt (line 13),

indicating one node has failed. Then we can find its parent to explain what is being attempted
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Algorithm 6: Answer “How do you achieve your { goal — subgoal } ?” (Q5)
Input: Node n (Current node in execution)
Input: Node g (The goal or subgoal node found in Algorithm 3)
Output: String answer

1 if g = null then // specific to subgoal
2 return ”Sorry. I don’t have a subgoal.”
3 else
4 steps← output of Algorithm 5 given g;
5 return ”To achieve the {goal — subgoal} ” + g.name() + ”, I need to ” +

steps.to string();
6 end

(lines 15–17). Similar to the Fallback node, the failed node is then found to explain what went

wrong (line 18–22). Line 25–33 considers the case where a Fallback node has an ancestor Retry

node. In this case, we want to inform the information at the retry node (which attempt and what

it is attempting to do) in addition to the Fallback information in the previous paragraph. Note that

the algorithm does not handle the case that a Retry node has an ancestor Fallback node. From our

experience, we found that Fallback is a better choice to handle failure than Retry, because there

might be another preferred method over retrying.

4.5.4 Supporting Dynamic Behavior Insertion as Subgoal

Behavior Trees have the advantages of modularity and reusability, but we cannot simply take any

node n′ and insert n′ after the current execution node n, because some behavior nodes have dy-

namic input ports and are thus dependent on some other behavior nodes providing corresponding

output ports. For example, if a user asked the robot to place screw (i.e., the sequence node

at depth 7 of Figure 24), we cannot simply insert the sequence node because its children need

object pose as input, which is provided by the detect caddy node at depth 7. We thus

need a way to not only directly insert the behavior node being asked, but finds a self-contained

node whose descendants provide the corresponding output ports.

Algorithm 8 shows the steps to find a self-contained behavior node ns. First, we find the
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Algorithm 7: Answer “Was there anything wrong?” “What went wrong?” “How
was the failure handled?”

Input: Node n (Current node in execution)
Output: String answer

1 p← n.parent;
2 is wrong, fell back ← false;
3 while p 6= null and p.type 6= Subtree and is wrong 6= true do
4 if p.type = Fallback and p.children[0].failed then // Fallback node
5 is wrong, fell back ← true;
6 answer← ”I could not ” + p.short description() + ” because ”;
7 nfail ← DepthFirstSearch: p, f (node)→ begin
8 if node.failed and node.type ∈ {Condition,Action } then return node ;
9 end

10 if nfail.parent 6= null and nfail.parent.short description = p.short description
then

11 answer += ”I was unable to ” + nfail.parent.short description + ” as ”;
12 answer += nfail.short description + ” failed.”;

13 else if p.type = Retry and p.attempt ¿ 0 then// Retry node
14 is wrong ← true;
15 rp = p.find non null parent;
16 if rp 6= null then
17 answer = ”I am retrying for attempt ” + p.attemp + ” to ” + rp.short desc +

”. ”;
18 nfail ← DepthFirstSearch: p, f (node)→ begin
19 if node.failed and node.type ∈ {Condition,Action } then return

node ;
20 end
21 fp = nfail.first ancestor with name;
22 answer += ”I could not ” + fp.short desc + ” because ” + nfail.short desc

+ ” failed.”
23 p← p.parent
24 end

25 if fell back then // Check if the Fallback node has Retry parent
26 p← fallback node.parent;
27 while p 6= null and p.type 6= Subtree do
28 if p.type = Retry and p.attempt ¿ 0 then
29 rp = p.find non null parent;
30 if rp 6= null then
31 a += ” I am retrying for attempt ” + p.attempt + ” to ” + rp.short desc +

”.”
32 p = p-¿getParent();
33 end
34 if not(is wrong) then answer = ”Nothing went wrong.” ;
35 return answer; 89



Algorithm 8: Find Self-Contained Behavior Node
Input: Node n (The node matching what is requested and

n.type ∈ {Sequence, Subtree })
Output: Node ns (Self-contained execution or control node where keyed input

parameters of its descendants are outputed from its descendants)

1 // get all input ports possibly with duplicates;
2 input ports← ∅;
3 foreach e ∈ n.execution descendants do
4 input ports← input ports ∪ e.input ports;
5 end

6 // filter all dynamic, keyed input ports without duplicates;
7 dynamic input ports← select distinct * from input ports where .is keyed();

8 // find an ancestor node who or whose descendants output(s) all dynamic input ports;
9 ns← n;

10 foreach p ∈ dynamic input ports do
11 if ns.execution descendants.has output port(p.type, p.key) then
12 continue;
13 else // go up a level
14 ns ← ns.parent;
15 while not(ns.execution descendants.has output port(p.type, p.key)) do
16 ns ← ns.parent;
17 end
18 end
19 end

20 return ns
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shallowest parent n of the action as the input of the algorithm. From lines 2–7, we get a unique

set of the dynamic input ports from each execution descendant of n. From lines 9–19, we try to

find all the output ports that provide data to the dynamic ports from n and, in the else block from

lines 14–17, if n does not provide any dynamic input port, we traverse the ancestors of n.

Algorithm 9: Append Self-Contained Behavior Node As a Subgoal
Input: Node n (Current node in execution)
Input: Node ns (Self-contained node, output from Algorithm 8)
Input: Node root

1 // find the Subtree parent of “n” as current subgoal;
2 p← n.parent;
3 while p 6= null and p.type 6= Subtree do
4 p← p.parent;
5 end
6 assert(p 6= null, “must use Subtree as subgoal”);
7 assert(p 6= root, “must have a Subtree as subgoal”);

8 // insert “ns” after the current subgoal;
9 root.insert child after(ns, p);

Algorithm 9 shows the steps to insert the self-contained node ns after the current subgoal.

Lines 2–5 find the current subgoal given the current node in execution n. Line 9 inserts ns as a

subgoal.

Before we move onto the next section, we have an important implementation note for prac-

titioners. As the BTs are static, existing implementations may get the number of children before

executing any child to check if every child is ticked. However, because we add the ability to dy-

namically insert a child, the number of children can be changed while a child is executing. During

our implementation of Algorithm 8 and 9, we used a function to dynamically find the next sibling

by locating the current running child and checking out of bound every time.
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4.6 Case Studies

In this section, we explore additional use cases of the algorithms presented in this paper, including

a gear insertion task for machining and explanations in the taxi domain [53]. The two domains

cover many applications in robotics, from manipulation to navigation, in continuous as well as

discrete space.

4.6.1 Large Gear Insertion: A Machining Task

To evaluate the algorithms, we first apply them to the a large gear insertion task, one that would

be found in a manufacturing application. Note that we have also demonstrated the proposed algo-

rithms on the screw picking and screw placing tasks, which we described earlier as examples to

give readers a concrete idea next to the abstract discussions. As mentioned earlier, unlike the screw

picking and placing tasks, the insertion task is a different task as it is not a pick-and-place task but

involves peg-in-hole insertion.

The behavior tree representation for the large gear insertion task is shown in Figure 27 and

the framed tree is shown in Figure 28.

4.6.2 Hierarchical Explanation Generation

We first briefly review the algorithms to answer Q1–Q5. Answering Q1 is straightforward, which

only needs to return the short description of the node in execution. Answering Q2 requires re-

cursively visiting the ancestors of the current node n in execution, ignoring those without a name

and those with the same name as n’s, as well as decorator nodes. Answering Q3 needs to find the

subtree parent of n, which may not always exist. Answering Q4 simply returns with the name of

the root node. Answering Q5 involves performing a depth-first search for the descendants of n

until it finds a child that has a name that is not the same as n’s. During the process, it ignores all

decorators and, when one of the children is found, the branch is not explored any further.
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       Subgoal                              Steps                                Actions

Figure 28: The framed BT for the large gear insertion subtask.

We now validate the generation algorithms by examining representative nodes in the large

gear insertion task shown in Figure 27.

The simplest case is the move to node at depth 5 across all 3 subtasks. It has a

RetryUntilSuccesful decorator parent and then a subgoal parent. In the context of the

gear insertion subtask, the answers to Q1 and Q2 are “I move to see chuck” and “I move to see

chuck in order to go insert large gear”. In answering Q2, the RetryUntilSuccesful decora-

tor is ignored. The answers to Q3 and Q4 are “My goal is to build a gearbox kit” and “My subgoal

is to go insert large gear”. When asked how the robot achieves the subgoal or goal, i.e., Q5, the

answers are the following:

To achieve the subgoal “go insert large gear”, I need to do 3 steps. 1. move to see

chuck. 2. detect chuck. 3. insert large gear.

To achieve the goal “build a gearbox kit”, I need to do 3 steps. 1. go insert large
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gear. 2. go pick screw. 3. go place screw.

Note that the subgoal answer to Q5 is to verbally state the semantic set of “steps” shown in Fig-

ure 28.

A relatively deeper example in terms of tree depth are the look at... nodes at depth

7 across all 3 subtasks. It has an immediate sequence node parent which has a sequence parent

without a name because the RetryUntilSuccesful decorator parent can only have one child.

In the context of the gear insertion subtask, the answers to Q1 and Q2 are “I look at chuck roughly”

and “I look at chuck roughly in order to detect chuck”. The answers to Q3–Q5 are the same because

the goal and the subgoal are shared.

Another example is from one of the execution nodes at depth 8. Let’s take the scan

scene node as the example. Still in the context of the gear insertion subtask, the answers to

Q1 and Q2 are “I scan scene for collision avoidance” and “I scan scene for collision avoidance

in order to insert large gear”. The answer to Q3 is “My subgoal is to go insert large gear”. The

answers to Q4 and Q5 are the same as before.

With those three examples, one can easily infer the answers in the screw picking and place

subtasks.

4.6.3 Dynamic Behavior Insertion as Subgoal

As we went through the insertion algorithm in the previous section, we will now consider how to

answer the question “Can you insert large gear?” The insert large gear sequence node i at

depth 7 will be first located. Then each of the decedents of i, from convert to insertion

pose to retreat arm at depth 8 in Figure 27, will be examined to get a unique set of dy-

namic input ports: {object pose, insertion pose}. The object pose will be found from the detect

chuck node (depth 7), a grandson of i’s grandparent, the empty sequence node (depth 5). The

object pose input port will be found right at convert to insertion pose which is a child
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Depth 1  →

(Collapsed)

← Dynamically inserted

Figure 29: The behavior tree for the kitting task after answering ““Can you insert large gear?”.
Most subgoals in Fig. 22 are collapsed for readability. The empty sequence node at depth 1 is
dynamically inserted to ensure all input ports are satisfied by output ports. See Section 4.6.3 for
more.

of i. Thus, the empty sequence at depth 5 will be inserted after the subgoal node at depth 1 (Figure

22). The final tree is shown in Fig. 29 with some nodes collapsed for readability.

The same logic also applies if a user asks “Can you place screw into caddy?” or “Can you

pick screw?”

4.6.4 Explanations of Failures

Failures can happen at any node, so it is important to consider timing. Here we will test Algorithm

7 in different scenarios. Again, we will use the behavior tree in Fig. 27.

If the failure happened at the “look at chuck” node (fourth node at depth 8) and the question

is asked while the robot is retreating its arm, the answer will be “I could not insert large gear

because look at chuck failed.” The “insert large gear” is the description of the Fallback node

(second node at depth 6). If the question is asked while “look at chuck” failed for the second time,

it will answer “I am retrying for attempt 1 to go insert large gear. I could not insert large gear

because look at chuck failed.” Here the retry information is added.

A failure can also happen during navigation, i.e., the “move to” node at depth 5. If the robot
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Agent

Passenger

Toll

Destination

Dead Zone

Column 1 Column 2 Column 3 Column 4

Row 1

Row 2

Row 3

Figure 30: An environment of the taxi Domain, in which the agent delivers a passenger to the
destination. Row and column numbers are added for easy reference.

keeps navigating for a long time and a person wonders why. The answer will be “I am retrying for

attempt 1 to go insert large gear. I could not go insert large gear because move to see chuck failed.”

Additionally, when the robot failed to detect chuck because it could not lift torso (first node

at depth 7), the robot will answer “I am retrying for attempt 1 to go insert large gear. I could not

detect chuck because lift torso failed.”

If asked in the screw picking and place subtasks, the answers would be very similar.

4.6.5 Taxi Domain: A Navigation Task

While this work was originally designed for the context of the kitting task, we show here the

potential of this work in a non-manipulation domain. In this modified taxi domain [53], a taxi

agent is tasked with picking up and dropping off a passenger while accruing into the fewest tolls

possible.

We formalize this task as a deterministic Markov Decision Process,MDP := (S,A, T,R, γ, S0),

where S and A are state and action sets respectively, T : S × A → S is the transition function,

R : S × A × S → R is the the reward function, γ ∈ [0, 1] is the discount factor, and S0 is the

initial state. Tolls provide negative reward, and delivering a passenger at the goal provides a large

positive reward. The agent has an optimal policy π∗ : S → A that maps states to actions that

optimize the reward given an infinite horizon. An instance is shown in Figure 30.
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       Goal                             Subgoals                          Steps                          Actions

     Depth 1                          Depth 2                           Depth 3

Depth 4 →

Figure 31: The behavior tree representation of an optimal policy in the non-manipulation taxi
domain. Given that it is less complex than a kitting subtask, there is no need for simplification.
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The Taxi Domain is implemented in PyGame20 and the simple rl framework [3]. We trained

the agent using value iteration [151].

The optimal policy π∗ for the instance is represented in the behavior tree in Figure 31.

With domain-specific goal and subgoals, the tree is semi-automatically generated by implementing

listeners to state-action switches. For example, switching from moving in one of four directions to

picking up the passenger will result in generating the navigate to passenger sequence.

The goal here is to deliver the passenger, which consists of two subgoals: go pick up passen-

ger and go drop off passenger. To pick up the passenger, the agent first navigates to the passenger

by moving all the way right (3 move right actions) and all the way up (3 move up actions),

and takes a move left action before finally picking up the passenger. To drop off the passenger,

the optimal agent takes the reverse path back to the destination. By taking the rightmost path, the

agent avoids the toll in row 2, column 3.

As noted in the caption of Figure 31, the behavior tree representation is already in its simpli-

fied form, with no need for framing, such as removing decorator nodes. However, as shown below,

the algorithms still apply without the use of decorator nodes as well as input and output ports. This

shows that the behavior tree does not have to be complex in order to leverage the algorithms for

explanation generation.

Similar to the large gear insertion task, we first examine the first action node move right

at depth 4 in Figure 31. The algorithms can answer Q1 to Q5:

Q1. What are you doing?

I move right.

Q2. Why are you doing this?

I move right in order to navigate to passenger.
20https://www.pygame.org/
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Q3. What is your subgoal?

My subgoal is to go pick up passenger.

Q4. What is your goal?

My goal is to go deliver passenger.

Q5 (subgoal). How do you achieve your subgoal?

To achieve the subgoal “go pick up passenger”, I need to do 2 steps. 1. navigate to

passenger. 2. pick up passenger.

Q5 (goal). How do you achieve your goal?

To achieve the goal “go deliver passenger”, I need to do 2 steps. 1. go pick up passen-

ger. 2. go drop off passenger.

A different and more interesting example is the execution of the pick up or drop off

action node at depth 3, which is not the deepest. Here we will take the example of the drop off

action node – the case for the pick up node is very similar. The following are the answers from

the algorithms:

Q1. What are you doing?

I drop off passenger.

Q2. Why are you doing this?

I drop off passenger in order to go drop off passenger.

Q3. What is your subgoal?

My subgoal is to go drop off passenger.

Q4. What is your goal?

My goal is to go deliver passenger.
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Q5 (subgoal). How do you achieve your subgoal?

To achieve the subgoal “go drop off passenger”, I need to do 2 steps. 1. navigate to

destination. 2. drop off passenger.

Q5 (goal). How do you achieve your goal?

To achieve the goal “go deliver passenger”, I need to do 2 steps. 1. go pick up passen-

ger. 2. go drop off passenger.

As the behavior tree does not have any input or output port dependencies, the dynamic

behavior insertion as subgoal for the taxi domain is trivial. We can insert the 2 subgoals with the

following questions:

Can you go drop off passenger?

Can you go pick up passenger?

Using Algorithm 8 and 9, the corresponding subgoals represented by subtrees are inserted after the

current subgoal.

4.6.6 Explaining Divergences Between Behaviors

When a robot is executing its behavior tree, people’s interpretations might be different, since hu-

mans tend to impute their own beliefs onto others [125]. After just a few executions, people will

have often already formed a mental model of the robot’s behavior. When this mental model differs

from the robot’s internal model, it is important to clarify where the divergences are and explain

this discrepancy to avoid confusion.

An example can be drawn from the taxi domain. Recall that Fig. 31 shows an optimal policy

where the toll in row 2, column 3 in Fig. 30 was avoided in order to maximize the reward. After

a few passenger deliveries in different environments, a person may still think that taking a single

extra toll at row 2, column 3 is more reasonable than detouring through column 4 taking three extra
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steps to avoid the toll. They may not understand that 1 toll is more costly than 3 steps. In cases

like this, it is beneficial to show where the divergences are to improve understanding.

Behavior trees can reveal such divergences automatically by presenting the robot’s actual

behavior and the human’s expected behavior for easy comparison. As shown in Fig. 32, the be-

havior tree representations of the two are placed side by side and the differences are highlighted

in blue. The divergences were found using the sequence comparison algorithm proposed by Wu

et al. [171]. The action sequences of the same subgoal between the two policies are compared by

calculating the edit distance and Longest Common Subsequence (LCS). Note that this visual com-

parison can also be used to differentiate behavior between multiple robots to improve comparative

understanding, and we are currently implementing it to complement to the visualization in Fig. 32.

4.7 Limitations and Future Work

To the best of our knowledge, we are the first to explore Behavior Trees for robot explanation.

We understand that there are still several limitations to the proposed work. We believe BTs are

promising, but still require more work to satisfy the needs of a robust robot explanation system.

BTs have the ability to allow custom decorator nodes but framing cannot natively handle

them, which might need to be explained when answering users’ questions. A workaround solution

is to have special cases in the algorithms, as in line 3 in Algorithm 2 and line 3 in Algorithm 5.

Also, to date, we have focused on the technical aspects, evaluating the systems with case

studies for subtasks in the kitting task, a gear insertion task for machining, and within the taxi

domain; a user study is still needed with non-expert robot users to evaluate the level of understand-

ability and the perception of the causal information in the answers to Q2–Q5. Having said this,

our focus has been contributing robot generation algorithms in the scope of behavior trees, which

paves the road to a robust explanation generation accounting for more human factors.

While we have demonstrated the use of our algorithsm in manipulation domains and the taxi

domain, it remains relatively unknown how to support other non-manipulation tasks. For example,
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in a multi-robot system or a fleet of autonomous cars, robot explanations are increasingly needed

given the increased complexity. However, given the complexity of robot manipulation and a sample

use in a non-manipulation domain, we believe that the proposed algorithms can cover additional

use cases, which will be explored in future work.

Another future goal is to investigate the questions being answered in this work; they are

currently only analytically grounded but need to be validated in a user study. Currently, there

is also a lack of research on what questions people would ask to get causal information on the

behaviors that a robot is exhibiting. Like humans, are the “why” questions the only things humans

seek for causal information from a robot’s behavior? What about the “how” questions, such as

“how do you achieve the goal”? What specific questions do people ask a robot generally? What

causal questions do people ask a robot? These remain open research questions.

A drawback of BTs is that they do not generate a smooth, continuous arm trajectory if each

waypoint is encapsulated in a behavior node separately. The recent development of the Moveit

Task Constructor (MTC) [73] looks promising on this front. This library is a wrapper around the

commonly utilized features of MoveIt such as motion planning and obstacle avoidance, but facili-

tates being able to track the current progress of execution, as well as makes specifying complicated

tasks, such as pouring, easier. In MTC, manipulation primitives are represented as stages. Each

stage can be linked together with other stages to form complete manipulation behavior. Examples

of stages can be commands such as motion planning and moving the end effector to a specific

pose or direct commands to the gripper joints. The success of each group of stages can propagate

upwards as a reason for the success or failure of the behavior. For example, failure to reach a des-

ignated goal because of a detected collision would result in the behavior failing, because there is

an obstacle blocking the path. These fine details, if used in the replies to the explanation questions,

can further improve the understanding of the robot and its behaviors.

As MTC opens up the possibility for explanations at the low-level motion planning, we also

need to explain low-level path planning in navigation, e.g., the popular ROS navigation stack [109].
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Similar to MTC, we can enable the robot to explain if there is an obstacle on the ground blocking

its path. Fortunately, we recently learned that the navigation stack in ROS 2 uses BTs to represent

navigation behaviors [107], which paves the way for our explanation algorithms to be integrated

into the navigation stack.

Last but not least, because BTs are also sequential, BTs do not support some properties of

behavior execution that humans and animals are born with, such as pausing and reversing actions,

which are the capabilities that a robot needs to have to achieve more natural, human-like robot

explanation in certain circumstances.

4.8 Conclusion

In this paper, we have demonstrated the use of Behavior Trees (BTs) for high-level robot expla-

nations. We proposed framing BTs into a set of semantic sets, i.e., {the goal, subgoals, steps,

actions}, and applied them to screw picking, screw placing, and large gear insertion manipulation

tasks as well as the taxi domain. We contributed algorithms to generate robot explanations, specif-

ically giving answers to questions seeking causal information, which is what humans commonly

seek from human explanations. We also described an algorithm that finds self-contained behavior

based on the matching node from what is being asked, then inserts it after the current subgoal that

the robot is achieving. We hope our work inspires other researchers working towards the goal of

transparent and trustworthy robots, and paves the road to a robust robot explanation system.

In the chapter after the next chapter, we will use the screw picking and placing tasks as well

their behavior tree representation to investigate how robots can aid inference-making.
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Figure 33: The projection of perception results: the detected objects (white and green) and the
object to be manipulated (green). Using our implementation of projection mapping, researchers
and practitioners can enable a robot to accurately externalize internal states for explanation. A
video is available at https://youtu.be/S0z9e2gUrEA.

5 Projection Mapping Implementation21

5.1 Introduction

Traditionally, because of the distinct embodiment feature of physical robots, human-robot interac-

tion (HRI) researchers have been focused on how to enable robots to communicate their intention

through non-verbal means that are typical among humans, most notably pointing through eye gaze

[118, 6], and arm movement [56, 100]. Light as an indication has also been used [152].

These non-verbal cues found in human life play an important role in supporting and improv-

ing communication [5], but can also cause confusion. For example, how can a robot communicate

which objects it has detected and which one is it going to grasp? In cases like these, using eye-gaze

and/or pointing with its arm or end effector can be vague, especially in a clustered environment

(e.g., for four clustered objects on a table). Even with verbal explanations, these gestures could be

underspecified, requiring follow-up questions for clarification.

21This chapter appears in a paper [83] jointly authored with Alexander Wilkinson, Jenna Parrillo, Jordan Allspaw
and Dr. Holly A. Yanco. Please see Publication 5. Thanks to Analog Devices (ADI) and MassRobotics for organizing
the ADI Sensor Fusion Challenge and providing funds to purchase the sensors.
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Object Clusters 
(ROS point cloud pub.)

Rviz Visualization

Virtual Camera 
(Image pub.)

4. Subscribes to

3. Rviz plugin
(rviz_camera_stream)

Image Viewer
(Full screen GUI)

Projector Lens 
Intrinsics

(CameraInfo pub.)

1. Calibration

2. Subscribed by 6. Subscribed by

...
frame_id: 'proj_view'
height: 800, width: 1280
distortion_model: plumb_bob
D[0.0, 0.0, 0.0, 0.0, 0.0]
K: [1900.0, 0.0, 640.0, 0.0, 1900.0, 817.0, 0.0, 0.0, 1.0]
R: [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0]
P: [1900.0, 0.0, 640.0, 0.0, 0.0, 1900.0, 400.0, 0.0, 0.0, 0.0, 1.0, 
0.0]
...

5. Virtual world

7. Output  (HDMI)Pose is the same as projector’s
(Pub.: ROS publisher)

Interactive Markers
(Other displays in Rviz)

Figure 34: High-level diagram for our projection mapping implementation. With the projector lens
calibrated, a virtual camera – placed in Rviz with the same pose as the projector in real world –
subscribes to the camera intrinsics so it can output an image of objects visualized in the virtual
world in Rviz to the projector to reflect the perceived objects. See Section 5.2 for more details.

In this chapter, we present a tool for implementing projection mapping using an off-the-shelf

projector, including the high level architecture and low level technical details, in order to project

perception results directly onto non-flat objects of interest in the environment.We also describe a

concrete robot and hardware platform as an example of the tool’s use, even though the technique

is robot-agnostic. Note that while we focus on projection mapping with the same object as input

and output, projection mapping can be applied more broadly to arbitrary objects and targets [75].

The work in this chapter laid the foundation for the human-subjects study to be discussed in

the next chapter.

While projection mapping in robotics is not a new idea, the implementation effort has been

missing and thus not as accessible as implementing arm movement or eye gaze through head

movement. This gap effectively blocks HRI researchers from conducting human-subject studies to

investigate the effects of accurate externalization through projection mapping or by comparing it

to other methods. In addition, this work can also help robotics and AI researchers to externalize

the output of their computer vision algorithms for a better understanding of their algorithms.
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5.2 Overview

Figure 34 shows the high-level architecture of our implementation. Essentially, we set up a virtual

camera with the same lens intrinsics in the same pose as the projector’s in the physical world in

the ROS visualization software, Rviz. We then publish perception results in point cloud clusters

and the object point cloud to be manipulated, then add point cloud visualization in Rviz. Finally,

we have an image viewer in a full screen GUI to output the image that the virtual camera sees to

a projector. We implemented everything in ROS [138]. All of the files are available on GitHub22,

including a sample Rviz config file, sample point clouds in pcd format, and the launch files for

publishing lens intrinsics and the pose of the projector.

Our projection mapping system functions on the principal that a projector is the dual of

a camera. If a camera is thought of as a map from 3D world coordinates to 2D image plane

coordinates, then a projector is a map from 2D image plane coordinates to 3D world coordinates.

In a camera, each light ray from the world passes through the lens and hits the sensor. In a projector,

each light ray passes through the lens and hits a surface in the world.

By using a virtual camera with the same intrinsics and extrinsics as the projector, we can

then map points from the virtual world’s 3D space to 3D space in the real world.

5.3 Projector Selection Consideration

While any projector should theoretically work as long as we calibrate it to get the lens intrinsics

as detailed below, there were a couple of factors that made us choose the ViewSonic PA503W

projector in our implementation. In the common use case where projectors are used to watch

movies and show presentation slides, the room lighting is often switched off or dimmed to make

the projection more bright and thus more legible. However, robots often operate indoors with lights

on and not dimmed, so the consideration here is to make the projection visible and legible even

under bright light conditions.

22https://github.com/uml-robotics/projection_mapping
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Figure 35: We calculated the intrinsics of our particular projector by mounting it perpendicular to
a posterboard at a fixed distance. See Section 5.4 for more details.

There are three contributing factors: brightness, contrast and the projection technology.

The standard measure of brightness is the ANSI lumens value, which is a measure of the total light

output per unit of time. For reference, our PA503W produces 3,800 ANSI lumens of light. Contrast

is expressed by a ratio between the darkest and lightest areas of an image, with our PA503W being

capable of a 22,000:1 contrast ratio. Finally, there are two popular projection display technologies:

Liquid Crystal Display (LCD) and DLP [92]. As a brief summary from the work by Hornbeck,

DLP is based on a Digital Micromirror Device (DMD), and it has a higher brightness than LCD

because DMD has a reflective and high-fill factor digital light switch, as opposed to active-matrix

LCDs, which are transmissive and thus the generated heat cannot be dispatched well. See [92] for

more detail.

5.4 Projector Calibration

We modelled the projector with a pinhole lens model after determining the focal length f and

principal point (cx, cy). Both of these values were calculated manually by mounting the projector

perpendicular to a flat surface at some fixed distance (e.g., 35), marking the corners of the image,
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and then using the projective equation:

f = w
Z

W
(1)

where w is the width of the projected image in pixels, W is the width of the projected image in

meters, and Z is the distance from the projector to the image plane in meters.

The principal point (cx, cy) can be calculated given X and Y , the respective distances from

the origin to the intersection of the optical plane and the optical axis in meters:

(cx, cy) = (w
X

W
,h
Y

H
) (2)

where h is the height of the projected image in pixels.

These values for f , cx, and cy were then placed into an intrinsic camera matrix K:

K =


fx 0 cx

0 fy cy

0 0 1

 (3)

With this matrix calculated for our projector, we then publish it in a ROS CameraInfo message23

and set up a virtual camera in RViz (see Section 5.5) that subscribes to the CameraInfo message and

is located at a TF transform corresponding to the pose of the physical projector. The CameraInfo

message for the ViewSonic projector and the details of this process are in our code24.

It is worth noting that measurement error may accumulate during this manual process. Since

consumer projectors are typically designed with little radial or tangential distortion, we did not

explicitly model lens distortion. In practice, the projection does not deviate much from the real

objects, but it could be improved by more accurate projector-camera calibration methods [119].

23https://docs.ros.org/melodic/api/sensor_msgs/html/msg/CameraInfo.html
24https://github.com/uml-robotics/projection_mapping/blob/master/projector_

camera_info.yaml
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5.5 Virtual Camera

We developed rviz camera stream25, an Rviz plugin that outputs an image of what a camera

sees in the Rviz virtual world. We refer this as the virtual camera.

Represented in a ROS TF frame [63], the pose of the virtual camera – placed in the virtual

world in Rviz – is the same as the pose of the projector in the real-world. Together with the fact

that the virtual camera pose is in the same transform hierarchy as a perception sensor, we are able

to transform a point cloud or any other visualizations from the perception sensor’s frame to the

virtual camera’s frame. This method allows the projection to be in a projector’s view point of what

the perception sensor sees.

To have the same optical properties as the projector, the virtual camera subscribes to a ROS

topic with the CameraInfo message mentioned in the previous subsection. This ensures that, when

objects are projected back to the real-world, the projected objects match the object’s physical shape

and size.

Finally, because this virtual camera resides inside Rviz, it is able to see everything being

visualized in Rviz, such as interactive markers [74], navigation maps, or point clouds. For example,

point clouds are seen by the virtual camera and projected in Figure 33.

5.6 Projection Output

Because the rviz camera stream package publishes the image of what the virtual camera

sees, we use the image viewer from the image view ROS package to subscribe to the image

topic and output to the projector through HDMI. Note that the image viewer is in full screen by

enabling and using the “Toggle full screen” keyboard shortcut in the keyboard setting of Ubuntu’s

Settings software.

25https://github.com/uml-robotics/rviz_camera_stream; thanks to Lucas Walter (https://
github.com/lucasw) for his contribution.
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Figure 36: A sample use, where a projector is mounted onto a Fetch robot via a custom hardware
structure attached to its upper back and a turret unit to pan and tilt the projector. However, the
projection mapping technique is robot agnostic and the projector does not have to be attached to
the robot. See Section 5.7 for more details.

5.7 Hardware Platform

As seen in Figure 36, we have demonstrated an implementation on a Fetch robot with a custom

structure to mount a projector. While it would have been easier to attach the projector to the robot’s

head, the neck may not have had enough torque to bear it, so we chose to attach the structure to the

robot’s upper back. In order to pan and tilt the projector, we attached a ScorpionX MX-64 Robot

Turret Kit26.

Despite using a Fetch robot, the projection mapping technique we describe is robot agnostic.

Previously, we also applied it on an assistive robot [160]. The only requirement is that there is a

26https://www.trossenrobotics.com/p/ScorpionX-RX-64-robot-turret.aspx
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transform frame for the projector so it is integrated into the transform hierarchy of a robot. In our

case, we created two frames: one for the projector lens and another for the attachment point at the

bottom of the projector. However, this requirement does not necessarily mean that the projector

must be attached to the robot, but instead that it must be co-located with the robot in the operating

environment. For example, if one would like to use projection mapping with an industrial robot

arm, the projector can be placed nearby on a structure as long as its lens is pointing at what the

perception sensor is targeting. By doing so, a robot arm will also not block the projection during

manipulation, as careful readers may notice in the accompanying video. Otherwise, one can add a

cylinder collision object to model the line of sight to mitigate blockage.

5.8 Conclusion

In this chapter, we have detailed our approach to and implementation of projection mapping in

robotics. Four major components were discussed: projector consideration and calibration, a virtual

camera in Rviz, projection output, and a sample hardware platform.

To implement projection mapping, a roboticist can purchase an off-shelf projector, calculate

a coordinate frame after installing it, calibrate its lens to get the lens intrinsics, and publish it in

an encapsulated CameraInfo message. Then the roboticist would set up a virtual camera using

the rviz camera stream Rviz plugin and subscribe to the CameraInfo message. Then the

roboticist could add point cloud visualizations or any other displays (e.g., interactive markers) in

Rviz and have the projector point them either manually or using a turret unit, and finally use an

image viewer to output the image from the virtual camera to the projector.

In the next chapter, we will use this projection mapping technique for manipulation and

navigation projections.
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6 Communicating Missing Causal Information of Past Actions27

6.1 Introduction

Current research has focused on investigating in-situ explanations of robots’ current actions, which

happen at or around the moment. For example, researchers recently have investigated the use of

images of kitchen cleaning tasks with a description explaining the robot’s current behavior [157].

Other research includes a robot explaining why it undesirably blocked a TV while a person is

watching TV at the moment [149]. Technical approaches include explanation generation of robot’s

current behaviors using function annotation in assembly lines [87], an encoder-decoder model [43],

and behavior trees [82].

Yet it remains relatively unknown how a robot would communicate explanations of its past

actions. Providing explanations for past behavior is especially interesting because the environment

might change after the robot’s actions. For example, objects might be moved after manipulation

tasks or obstacles on the floor might be removed by people after navigation tasks (e.g., a wet floor

sign removed by cleaning staff once the floor becomes dry). These environment changes lead

to some missing causal information which may confuse people when the robot later explains its

behavior with references to objects that were only present in the past.

Robots must account for these scenarios and provide indications to help people infer the

missing causal information that might not be present while explaining. Indeed, researchers in

psychology have found that humans hope to gain causal knowledge from explanations by others

[105, 22]. When the causal knowledge is present, understanding is improved and “people can

simulate counterfactual as well as future events under a variety of possible circumstances” [108].

To expand our knowledge on how a robot can help people to infer past missing causal infor-

mation, we conducted an experiment online through Prolific [132]. Participants watched videos of

a Fetch robot [170] replaying its past actions in a collaborative mobile kitting task, consisting of

27The work in this chapter was submitted to ACM Transactions on Human-Robot Interaction in 2021. Vittoria
Santoro and Jenna Parrillo contributed to the replay implementation.
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Figure 37: A mobile manipulation task environment in which we investigated how could the robot
provide indicators to past missing causal information. The robot is supposed to pick different
gearbox parts, including the gearbox bottoms on the table it is facing, take them to the caddy table
on the left, and deliver the caddy to the bottom right table for an assembly worker to assemble a
gearbox.

both manipulation and navigation.

In the task (Figure 37), the Fetch robot is supposed to help a worker to assemble gearboxes:

the robot picks one of the gearbox bottoms on a table, navigates to a caddy table, and places the

gearbox bottom into a caddy. The caddy has three compartments: one big rectangular section and

two small square sections (See Figure 37 left). The robot has to put the gearbox bottom into the

bigger compartment because the object does not fit into any of the other two small compartments.

The task was originally designed for the FetchIt Mobile Manipulation Challenge and there are

different parts for the robot to pick. For more details, please see our previous paper [79].

In the experiment, we considered three highly motivated scenarios where a robot needs to

replay its past behavior to help people to infer missing information because the robot’s explanations

are unexpected – inconsistent with what participants observe. The scenarios below are narrated

from the worker’s perspective and presented to participants throughout the experiment:

1. Picking Failure Scenario. “As shown below (Figure 37), a robot is helping you to assemble
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gearboxes. It can drive itself, pick, and place a gearbox bottom into a caddy. One day, you

leave your work area for a few minutes. When you return, you notice there are still 2 gearbox

bottoms on the table. You ask the robot if it just picked up a gearbox bottom, it says yes.

You are confused, and ask the robot to replay its past behavior. Then you see the robot was

grasping a large wood chip torn up from the tabletop.”

“In the video, the robot replays its past behavior: picking up a large wood chip that the robot

thought is a gearbox bottom. At replay time, the wood chip is gone already. Can you figure

out where the large wood chip was before?”

2. Navigation Scenario. “One day, another worker nearby told you the robot didn’t go straight

to the caddy table. But you see the robot every day, and it does go straight to the caddy table

every time. You are confused, and ask the robot to replay its past behavior. Then you see the

robot was actually avoiding an obstacle on the ground.”

“In the video, the robot replays its past behavior: driving itself to the caddy table. At replay

time, the obstacle on the ground is already gone. Can you figure out where the obstacle on

the ground was before?”

3. Placing Scenario. “One day, you hear a gearbox bottom dropped onto the floor behind the

caddy table. You ask the robot if it just put a gearbox bottom into a caddy, and it says yes.

You are confused, and ask the robot to replay its past behavior.”

“In the video, the robot replays its past behavior: putting a gearbox bottom into a section into

the caddy. At replay time, the gearbox bottom is already gone. Can you figure out which

section of the caddy that the robot tried to put the gearbox bottom into?”

As seen from the questions, there are three missing pieces of causal information due to

environmental change which the robot should indicate at replay time.
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Figure 38: The failure scenario that inspired the first picking scenario: A Fetch robot misrecog-
nized a torn up wood chip near the top-right corner of the table as a screw.

Figure 39: The original scene where the robot avoided a ground obstacle, the yellow wet floor sign,
to navigate to the caddy table to the left. At replay time, the yellow wet floor sign is gone. Key
videos frames for the replay video without the sign is shown in Figure 42.

1. For picking, because a large wood chip was recognized as gearbox bottom and the chip is

gone, the robot needs to indicate where it has thought the gearbox bottom was.

This is inspired by a real-world failure where the robot once misrecognized a wood chip as a

smaller screw, shown in Figure 38. Because the screws were placed inside a container hiding

the screws, we used the larger gearbox bottoms and placed them directly on the table.

2. For navigation, the robot has to take a seemingly non-optimal navigation path because there

was a ground obstacle – a wet floor caution sign – between the two tables during navigation

(See Figure 39).

117



3. For placing, the robot should indicate which caddy compartment the gearbox bottom was

placed into, so a human can understand that a gearbox bottom does not fit a small caddy

section so the gearbox bottom slipped and dropped onto the floor.

To help people to discover the missing causal information, we manipulated seven methods

that the robot used to indicate relevant actions in the mobile kitting task. Our base condition was

a physical movement replay (head, arm and base movement) where the robot would physically

replay its past actions. We tested this base condition against conditions for three communication

methods including speech, projection, as well as with both speech and projection. These three

conditions were also tested in combination with physical replay.

In a questionnaire, we asked participants whether and when they have inferred the missing

information – the locations of the misrecognized object, the ground obstacle, and the section of

the caddy the object was placed into. Participants were also asked about their confidence in their

inference answers, participants’ mental workload, and robot trust.

6.2 Hypotheses

Driven by the observational learning work in Section 2.6 and particularly that demonstrator’s in-

tention aids causal inference, we formalized the following hypotheses.

Hypothesis 6.1 – Effective causal inference with verbal markers; Adding verbal markers

to relevant actions in a robot’s action sequence will help people to effectively infer the causality of

the robot’s behavior, measured by subjective measures about the three missing causal information:

where the gearbox bottom was, why the robot did not choose the straight path, and which caddy

compartment the gearbox bottom was placed into. This hypothesis also tries to validate the human

intentionality study in [68] that intentional actions with verbal markers, such as “here” and “there”,

help to understand causality.

Hypothesis 6.2 – The same effectiveness of causal inference with projection markers

vs. verbal markers; Adding projection markers to relevant actions will have at least the same
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effectiveness to infer the missing causal information as verbal markers. The measure for this

hypothesis is the same as H6.1.

Hypothesis 6.3 – Faster and more accurate causal inference with projection markers;

Adding projection markers will make the causal inference faster than verbal markers, measured by

when participants find the three pieces of missing information. As projection directly provides the

causal information to the robot’s operating environment, we expect projection is at least the same

as verbal markers in terms of causality inference.

Hypothesis 6.4 – The same workload in both verbal and projection conditions; Having

projection markers will have the same amount of workload for the inference tasks, measured by

subjective measures.

Hypothesis 6.5 – A robot is more trustworthy with projection markers; Because projec-

tion markers have the potential to infer missing causal information faster, we believe people will

trust the robot more, measured by subjective measures.

Hypothesis 6.6 – There will be less workload when presented both verbal and projec-

tion markers; Inspired by the multiple resource theory by Wickens [168] and the visual buffer

effect [150], we believe that when more channels are used to convey the causal information, it

makes the inference easier, and thus requires less workload. The measures will be subjective and

the same as H6.4.

6.3 Experiment Design

The experiment followed a between-subjects design. In each condition, different participants

watched three videos of a mobile manipulation task and completed a survey.

6.3.1 Task

In the videos, the robot replayed three subtasks in a mobile kitting task: it first tried to pick a

gearbox bottom, navigated to the caddy station, and placed the gearbox bottom into a caddy.
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As mentioned earlier, the robot navigated in a detoured rather than a straight path during

the replay as there was a wet floor caution sign along the way. Additionally, the robot replayed its

gearbox bottom grasping without any gearbox bottom in its hand because it treated a large wood

chip torn from the table as a gearbox bottom. The large wood chip was already gone at replay

time. Except for these two missing causal information, because no gearbox bottom was physically

placed into a caddy compartment, the compartment position was also missing.

At replay time, we used verbal markers and projection markers to indicate the missing causal

information: which gearbox bottom the robot was grasping, why the robot detoured during navi-

gation, and which caddy compartment the gearbox bottom was placed into.

The mobile kitting task was performed in an enclosed arena. For participants to see the

whole arena and the ground obstacle projection in the videos during the picking and navigation

replays, we set up a camcorder on a tall tripod sitting on a table at the near right corner outside

of the arena. Specifically, the distance from the lens of the camcorder to the floor was around 1.9

meters (7 feet 8.5 inches). The placement was intentional to cover the wide field of view of a

human’s eyes. In the placing replay, we placed the camcorder to the left of the robot outside of the

arena to get closer to the caddy table.

6.3.2 Study Conditions

There are seven conditions in this experiment, designed to show different approaches to indicate

missing causal information during the replay of the robot’s past actions. As we describe each

condition below, Figure 40 to 44 show the key video frames from the videos of the conditions.

1. Replay. During this condition, the robot replayed all actions in the action sequence of the

task without any verbal or projection indication: all head, arm, and wheel movements. No explicit

indications of causality were expressed by the robot. We have this because this is very similar to

introspection which requires humans to investigate thoroughly.

2. Replay-Say. In addition to replaying all actions, the robot speaks regarding the miss-

120



1. Scan scene 2. Gaze target 3. Above target 4. Grasp 5. Reset

Figure 40: Snapshots from the picking videos with physical replay. During the picking task, the
robot mistreated a wood chip as a gearbox bottom on the right edge of the table. Participants were
asked to infer where the robot has picked. Verbal indicators are in Table 7. Projection photos are
in Figure 41. There was no arm movement in the Say, Project, and Project-Say conditions.

1. Scan & project 3. Above target 4. Grasp

Figure 41: Tabletop projections in the picking videos. Recognized objects are projected in white;
The target object to be picked is in green. These three snapshots are corresponding to the first,
third, and fourth snapshot in the previous figure (Figure 40).
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1. Start 2. Rotate to its left 3. Detour 4. At target 5. End

Figure 42: Snapshots from the navigation video in the Replay-Project condition, where paricipants
need to infer where the ground obstacle (a wet floor sign) was. The yellow projection consists of
multiple 3D spheres of point clouds from the robot’s base laser scan. Purple arrows indicate the
robot’s detour path. Non-projection conditions had no projection on the ground. For conditions
with speech, its text is shown in Table 7. In the Say, Project, and Project-Say conditons, the robot’s
base did not move.

1. Scan scene 2. Above section 3. Close to section 4. Release 5. Reset

Figure 43: Snapshots from the placing video in the Replay condition, where participants need to
infer which section of the caddy that the robot placed into. Again, for speech condition, the text is
shown in Table 7. Projection photos are shown in the next figure (Figure 44).
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1. Scan & project 2. Above target 4. Release Reference Image

Figure 44: Tabletop projections in the placing videos. The last snapshot is from the Replay condi-
tion video and is indented to easily differentiate the projection from the photos to its left. The first
three snapshots are corresponding to the first, the second, and the fourth snapshot in the previous
figure (Figure 43) The rightmost reference image has been provided here to show what the image
looks like without any projection, to allow for differentiating where the projection is on the left
three figures.

ing causal information during relevant actions to indicate the location of the gearbox bottom, the

ground obstacle, and the caddy compartment, as shown in Table 7. The earliest relevant actions

are chosen to avoid ambiguity.

As seen in Table 7, we have chosen simple words in the speech for participants to easily

understand. The speech was generated using Google Cloud Text-to-Speech28: WaveNet [130],

28https://cloud.google.com/text-to-speech

Table 7: Causal Verbal Markers And Their Timing
Speech Timing

“Ok. I picked up a gearbox bottom from here.” Robot’s gripper is over the target object
(Third photo in Figure 40).

“Ok. I didn’t go straight to the caddy table be-
cause there was something on the floor in front
of me on my left.”

Before robot starts driving itself.

“Ok. I placed the gearbox bottom into the near
right section of the caddy.”

Robot’s gripper is over the compartment.
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specifically en-US-Wavenet-D. We lowered the speech speed to 85%, as suggested by [111], to

counter the noise from the air conditioning system at the ceiling in our facility. Because the volume

from the robot, Fetch’s base speakers was very low, we bought a 20W JBL FLIP 5 Bluetooth

speaker29 and placed it behind the neck of the robot. We chose to buy a white one to match the

Fetch robot’s primary color and, thus, it makes the speaker less noticeable.

3. Replay-Project. The robot replayed all actions and, instead of speaking, projected the

causal information during relevant actions, the perception result and manipulation target back to

the operating environment during picking, arrows of its navigation path as well as the 2D projection

of multiple spheres representing the laser scans of the ground obstacle, and a cubic projection to

represent the space that a caddy compartment occupies.

This condition is interesting because projection is not a human capability and we want to

explore the use of projection mapping, a more salient effect, inspired by the action effects discussed

in Section 2.6. As seen in hypothesis 6.2, we expect it to have the same effect as the verbal markers.

4. Replay-Project-Say. This condition includes both verbal and projection indicators. The

combination is inspired by our previous study in Chapter 3, which shows verbal explanations is

needed in addition to the non-verbal cues. It is also inspired by Multiple Resource Theory [168],

which states that a cross-modal interface, using modalities that reside in two different channels,

has advantages over an intra-modal interface, using modalities that reside in the same channel.

The first four conditions above have physical movement replay. The remaining three below

do not have replay, to avoid replay being a confounding factor affecting participants’ responses.

5. Say. This approach is to only use verbal markers to indicate the gearbox bottom, the

ground obstacle, and the caddy compartment.

6. Project. This condition is only using projection mapping to project the perception result

back to the operating environment for the indication.

7. Project-Say. This condition combines both verbal and projection indicators but without

29https://www.jbl.com/bluetooth-speakers/JBL+FLIP+5-.html
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Figure 45: Photo shown to participants to answer where the robot picked. The correct answer is
“F”.

physical movements.

The videos for all conditions are available on the authors’ website30. In the survey, however,

the videos were shown as embedded YouTube videos to avoid excessive buffering for participants

from other continents, particularly Europe.

6.3.3 Questionnaire

To test the hypotheses, we asked participants to fill out a questionnaire that consists of 7-point

Likert-scale, free-form, and forced-choice questions. The questionnaire allowed us to measure

four subscales on causality inference, five subscales on task workload, adapted from the NASA

Task Load Index, as well as four subscales on trust. After each inference and timing question,

participants were asked “How confident is your answer to the question above?”

Manipulation Causality Inference & Condfidence – “Where was the large wood chip that

the robot tried to grasp before?” Figure 45 was shown. Options are “I don’t know” and seven

choices from A to G. The correct answer is “F”.

Timing of Manipulation Causality Inference – “When did you know the answer to the ques-

tion “Where was the large wood chip that the robot tried to grasp”?” The choices are: “I never

knew”, “Before its head started moving around”, “While its head was moving around”, “After its

head stopped moving”, “Before its arm started moving”, “When its arm started moving”, “When

30https://cs.uml.edu/˜zhan/rvt/
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Figure 46: To answer where the ground obstacle was, this photo was shown to participants. The
correct answer is “Area D”.

its hand was over the table”, “When its hand was very close to the table before grasping”, “When

it was grasping”, and “Other (Please elaborate)”.

Navigation Causality Inference – “Which grid section was most occupied by the obstacle

that the robot was trying to avoid before?” Figure 46 was shown. The options are “I don’t know”,

“Area A”, “Area B”, “Area C”, “Area D”, “Area E”, and “Area F”. The correct answer is “Area D”.

Timing of Navigation Causality Inference – “When did you know where the obstacle was?”

The choices are “Before the robot started moving”, “When the robot was facing area A”, “While

the robot was moving towards the caddy table in grid E”, “While the robot was moving towards the

caddy table in grid F”, “While the robot was moving towards the caddy table in grid C”, “When

the robot was in front of the caddy table”, and “Other (Please elaborate)”. The correct answer is

“Area D”.

Placement Causality Inference – “Which section of the caddy did the robot put the gearbox

bottom into before?” A caddy photo with a labeled compartment is shown in Figure 47. Response

choices include “Section A”, “Section B”, “Section C”, and “I don’t know”. The correct answer is

“Section A”.
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Figure 47: To answer which section of caddy the robot placed into, this photo was shown to
participants. The correct answer is “Section A”.

Timing for Placement Causality Inference – “When did you know where the robot put the

gearbox bottom into?” The options are “I never knew”, “Before its head started moving around”,

“While its head was moving around”, “After its head stopped moving”, “When it started moving

its arm”, “When its hand was over the caddy”, “When its hand was very close to the caddy before

releasing the gearbox bottom”, “When it was releasing the gearbox bottom”, and “Other (Please

elaborate)”.

Task Load Measures from NASA Task Load Index – We adapted the NASA-Task Load Index

(NASA-TLX) [86] multidimensional scale to estimate workload for the inference tasks, which

could be demanding cognitively. Specifically, we adopt the subscales of mental demand, physical

demand, effort, performance, and frustration level. We decided to remove the physical demand as

this study was conducted virtually and requires little physical activity; participants were allowed to

finish the whole study and watch videos in a hassle-free manner at their own pace. The subscales

and the options to these questions are listed below:

• Mental Demand – “How much mental and perceptual activity was required to answer ques-

tions after watching the videos (e.g. thinking, deciding, calculating, remembering, looking,

searching, etc)? Was the task easy or demanding, simple or complex, exacting or forgiving?”

The options range from very low to very high.
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• Temporal Demand – “How much time pressure did you feel due to the rate of pace at which

the tasks or task elements occurred? Was the pace slow and leisurely or rapid and frantic?”

The options range from very low to very high.

• Performance – “How successful do you think you were in answering the questions after

watching each video?” The options range from very good to very poor (responses are re-

versed to be consistent with others).

• Effort – “How hard did you have to work (mentally and physically) to accomplish your level

of performance?” The options range from very low to very high.

• Frustration Level – “How insecure, discouraged, irritated, stressed and annoyed versus se-

cure, gratified, content, relaxed and complacent did you feel during the task?” The options

range from very low to very high.

Muir Trust scale – We used the composite trust score by Muir [120] to test our trust hy-

pothesis, H6.5. The Muir trust score is well-established and has been used widely in the HRI and

robotics literature on the trust topic, including [48, 47, 163, 12, 164]. The subscales and their

options are:

• Predictability – “To what extent can the robot’s behavior be predicted from moment to mo-

ment?” The options are not at all, mostly not, somewhat not, neutral, somewhat, mostly, and

completely.

• Reliability – “To what extent can you count on the system to do its job?” The options range

from very low to very high.

• Competence – “What degree of faith do you have that the robot will be able to cope with

similar situations in the future?” The options range from very low to very high.
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• Trust – “Overall, how much do you trust the robot?” The options range from very untrust-

worthy to very trustworthy.

6.3.4 Quality Assurance Questions

Finally, we asked several attention check questions to help us ensure participant attention to the

experimental stimuli, similar to those used in Brooks et al. [26]. The questions are:

• After watching picking videos – What is the color of the gearbox bottoms? The choices are

“Blue”, “Red”, “Green”, and “Gray”. The correct answer is “Gray”.

• After watching navigation videos – What is the color of the robot? The choices are “Mostly

white”, “Mostly red”, “Mostly yellow”, and “Mostly green”. The correct answer is “Mostly

white”.

• After watching placing videos – How many robot(s) were in the video? The choices are from

0 to 3. The correct answer is “1’.

The choices to these attention check questions were displayed in random order. In addition,

we also added a Google reCAPTCHA31 verification question at the beginning of the survey to

avoid bots – scripts to automate question answering.

6.3.5 Procedures

The study was conducted on Prolific, a similar platform to Amazon Mechanical Turk for online

participants recruitment. Participants entered the study via an anonymous link to a Qualitrics sur-

vey32. Once started, participants were presented with informed consent information and the Google

reCAPTCHA verification. After agreeing to participate and passing the verification, participants

31https://www.google.com/recaptcha/about/
32https://umasslowell.co1.qualtrics.com/jfe/form/SV_dmVGfnPCdJ1ndEG

129

https://www.google.com/recaptcha/about/
https://umasslowell.co1.qualtrics.com/jfe/form/SV_dmVGfnPCdJ1ndEG


were presented with demographic questions and randomly assigned to one of the experimental

conditions.

Before watching each video, participants were presented with the motivating scenarios and

the prompt questions, as seen in the Introduction section. Then they watched the videos, embedded

from YouTube, and answered questions on the same page. We also gave the YouTube links that

open in a new tab to foresee potential technical difficulties; the text is “If the video doesn’t load,

please click this YouTube link33. It will open in a new tab/window”.

For those conditions where the videos have sound, we first showed a YouTube video with

sound only34 and asked what did they hear to ensure participants can hear the sound. This video

is presented on a separate webpage as we found YouTube remembers watchers’ mute preference,

and this can cause other videos on the same webpage to remain muted, even this sound-only video

is manually unmuted.

After watching all videos and answering relevant questions, participants are then asked to

answer the trust and NASA Task Load Index questionnaire to finish the study. To record partici-

pants as complete, participants are redirected back to Prolific at the end.

The entire study took an average of 13.6 minutes to complete, with a median of 11.6 min-

utes. All participants are paid US $3.01 at an hourly rate of $9.50, estimated for 19 minutes by the

experimenter before the study. The study was approved by the institutional review board (IRB) at

the University of Massachusetts Lowell in the USA.

6.3.6 Power Analysis, Participants, and Participants Recruitment

We used G*Power 3.1.9.7 [59] to perform two a priori power analyses because we planned to run

two types of hypothesis tests.

We first performed an a priori power analysis for “Goodness-of-fit tests: Contingency ta-

33The YouTube link is a hyperlink.
34Video to test sound: https://www.youtube.com/watch?v=jsJsnLZeJa0

130

https://www.youtube.com/watch?v=jsJsnLZeJa0


bles”. The parameters were: Effect size w = 0.5 for large effect size, α error probability = 0.05,

Power (1 - β error probability) = 0.95, Df = 9 which reflected the number of fixed choices in our

measures described in section 4.3. The output parameters in G*Power showed that the sample size

to reach desired power 1 − β = 0.95 was 84 for a single goodness-of-fit test. Thus, for the seven

conditions of our experiment design, we needed at least seven × 95 = 665 participants.

We also performed an a priori power analysis for “ANOVA: Fixed effects, omnibus, one-

way” tests. The parameters were: Effect size f = 0.4 for large effect size, α error probability =

0.05, Power (1 - β error probability) = 0.95, and Number of groups = 7, reflecting the number

of independent conditions in our study. The output parameters showed that the total sample size

needed was 140.

Thus our study would need approximately N = 665 participants to be sufficiently powered

for both types of statistical tests.

Using Prolific, we recruited a total of 691 participants, with only 25 (3.6%) of them failed

the quality check questions. The randomizer feature in Qualtrics is used to ensure evenly pre-

sented condition assignment. This resulted in 666 valid cases with one extra participant in the

Replay-Projection condition, which might be caused by timed-out participants taken one of the

other conditions. To ensure that we had an equal number of participants in each of the seven con-

ditions, we trimmed the data from the extra participant. This procedure resulted in a sample size

of N = 665 with 95 participants in each of the seven between-subjects conditions.

The final sample of 665 participants includes 267 females, 391 males, 5 non-binary, and 1

transgender person. Their age ranges from 19 – 88, M = 31.8, median = 28.0.

Specified qualifications for participation on Prolific included being over 18 years old, fluent

in English, which provided a reasonable assumption of English language comprehension, having

taking part in 100 – 10,000 studies on Prolific, and a 100% approval rating35. Each participant,

whether or not they passed data quality assurance checks, was paid for their participation, although

35Prolific uses the upper bound of the 95% confidence interval to calculate approval rate.
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as noted above, the data for people who failed data quality assurance checks was removed from

our analysis.

6.3.7 Implementation

The action sequence in the replay is implemented using ROS and Behavior Trees [40]. For more

details on how we modeled the mobile kitting task in Behavior Trees, please see [82].

For the replay, we recorded relevant ROS topics to a MongoDB database for its schemaless

feature (no need to create a table for each ROS topic data type) and querying capabilities, including

arm movement, neck, and eye camera movement, as well as wheel movement. At replay time, these

topics are queried from the database and streamed back to ROS to exactly replicate the movement

that happened at record time.

As projection markers are only used to show perception and manipulation intents, the timing

choice is rather simple and static. The robot is programmed to project right after objects are

recognized and the object target to be grasped is determined.

To activate verbal markers, we used the task-relevant heuristics to maximize influences to

the attention process, which is one of four serial processes that observational learning depends on

[16]. These heuristics are informed by research on instructional features [140] in observational

learning and are commonly known as learning points (also referred as codes) [154].

The heuristic used for picking and placing is to speak when the robot’s gripper is above

the manipulation target to both attract attention and avoid ambiguity. For navigation, the robot

speaks right after a navigation plan is computed and its base is about to start moving. All the robot

speeches are listed in Table 7.

6.4 Results

We used R to analyze the data. As we have seven conditions and a considerable number of choices

in our multiple-choice questions, we decided to annotate relevant figures with pairwise statistical
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test results, including the p values and significance levels. One to four asterisks (*, **, ***, and

****) indicate p < 0.05, p < 0.01, p < 0.001, and p < 0.0001 respectively. The abbreviation of

n.s. denotes “not significant” statistically. When discussing pairwise results, the statistics included

are all of statistical significance; any non-significant results discussed are explicitly mentioned as

such.

For 7-item Likert responses, we coded them -3 to 3, from the least to the greatest extent.

For example, “very unsure” would be -3 while “very confident” is coded 3.

6.4.1 H6.1. Effective causal inference with verbal markers (partial support)

To see whether verbal markers are effective for aiding participants in causal inference, we first

analyze the responses to the inference questions for picking, navigating, and placing subtasks.

For all inference types, including picking, navigation, and placing, we were able to find

statistically significant results from proportions tests. We first ran chi-square goodness-of-fit tests

on the conditions and responses to all the multiple-choice inference questions, which reveals sta-

tistical significance (p < 0.0001) for each type of inference. Post-hoc binomial tests with Holm-

Bonferroni correction for pairwise comparisons were performed and revealed significant differ-

ences for each type as well.

For the picking inference responses in Figure 48, there are statistically significant differ-

ences in all responses across all replay conditions (the top four subfigures), where almost all par-

ticipants correctly inferred that F is where the robot has picked.

In the Say condition, statistically significant differences were found for choices A, C, E, and

G. Around half of the participants (47, 49.5%) selected the nearby E, while the correct answer, F,

was not of significance. For the other two non-replay conditions, Project and Project-Say, around

half of participants have the correct inference (48, 50.5%participants for Project and 53, 55.8% for

Project-Say).

The results suggest that, without the physical replay of the head and arm movements, par-
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Figure 48: Manipulation inference responses.
“F” is correct. Replay conditions perform the
best: nearly all participants were correct. Half
wrongly selected nearby E in Say. Project and
Project-Say only have half participants correct.
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Figure 49: Navigation inference responses. The
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condition, in which only 40% were correct and
half selected nearby Area E.
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ticipants had difficulties in the picking inference. Particularly, with verbal indications alone, par-

ticipants had an even harder time inferring the correct picking location, F, because they chose the

nearby E.

For the navigation inference responses in Figure 49, there are statistically significant dif-

ferences in almost all responses across all conditions. Except for the Say condition, 78% - 93%

participants were able to infer the correct answer that Area D was where the ground obstacle was

(Replay: 79 participants, 83%; Replay-Say: 75, 78.9%; Replay-Project: 88, 92.6%; Replay-Proj.-

Say: 87, 91.6%; Project: 89, 93.7%; Project-Say: 79, 83.2%). For the Say condition, only 40.0%

of participants were able to infer correctly, while 49.5% of participants chose the nearby E.

Similar to the picking inference, half of the participants may have interpreted right as far-

right, which Area E is, in the robot’s indication for the ground obstacle location.

For the placement inference responses in Figure 50, we were able to find statistically sig-

nificant results in almost all choices (except for Section B) across almost all conditions except

for the Project condition. Around 60% of participants were able to infer correctly in non-Project

conditions: Replay: 56 participants, 58.9%; Replay-Say: 57, 60.0%; Replay-Project: 57, 60.0%;

Replay-Proj.-Say: 64, 67.4%; Say: 54, 56.8%; Project-Say: 58, 61.1%.

The responses of Section B may happen by chance in all conditions except for the Replay-

Say condition, in which there is only weak support by a p < 0.05 significance.

In the Project condition, unfortunately, all choice responses may happen by chance (n.s.).

The placement inference results suggest that the effectiveness of verbal indications is sup-

ported.

In conclusion, H6.1 is partially supported. Participants were not able to infer the location

of both picking and the ground obstacle with verbal markers. They can only infer where the robot

placed the gearbox bottom.
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6.4.2 H6.2. Effective causal inference with projection markers (partial support)

As we explore the answer to H6.1, we can also test whether projection markers are effective.

For picking inference, shown in Figure 48, the project indications alone (Project) and the

one with verbal indications (Project-Say) are only 50% effective compared with those conditions

with physical replay. However, like what we have discussed H6.1, projection indicators are more

effective than verbal indicators when they are the only cues being presented by the robot, because

half participants were wrong in the verbal-only condition of Say.

In terms of navigation inference, shown in Figure 49, all conditions with projection indica-

tions (Replay-Project, Project, Project-Say) are remarkably effective – the majority of participants

were able to infer the location of the ground obstacle. Compared to verbal indicators alone, pro-

jection indicators alone are one time more effective.

Regarding placement inference, shown in Figure 50, projection indicators with either phys-

ical replay (Replay-Project) or verbal indicators (Project-Say) are at least the same as other non-

projection conditions in terms of effectiveness. However, all the responses to the navigation in-

ference questions under the Project condition may happen by chance (n.s.), so we are not able to

conclude the effectiveness of projection indicators alone.

Thus, H6.2 is partially supported. Conditions with projection indicators are remarkably

effective for inferring the location of ground obstacles but are only half effective for picking infer-

ence when the projection is the only indicator present. With insignificant results in the placement

inference responses from Project, their effectiveness remains unknown.

6.4.3 H3 – Efficiency. Faster causal inference with projection markers (partial support)

To check whether projection markers lead to faster causal inference, we analyzed participants’

responses to the timing questions. We did not have this type of question for the Project condition

in the navigation because ground projection was always on throughout the inference video, thus
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no early or later events were present. However, we can still gain insight into whether projection

indicators alone had an effect when analyzing the responses from participants who experienced the

Project-Say condition in its navigation video.

For picking inference timing, we first conducted a chi-square goodness-of-fit test on the

responses to the picking inference timing question across all conditions, and it reveals a statisti-

cally significant result (p < 0.0001). Then we ran post-hoc binomial tests with Holm-Bonferroni

correction for pairwise comparisons, the results are annotated on Figure 51.

Comparing the Project condition with the replay conditions, approximately the same num-

ber of participants (∼35, 36.8%) in the Project condition chose “After its head stopped moving”

(in green) as the number of participants in replay conditions chose “When its hand was very close

to the table before grasping” (in violet).

While this means the Project condition accelerates picking inference, 40 participants (42.1%,

the most in all conditions) reported that they never knew the answer in the Project condition. In

general, this happens in all non-replay conditions, as seen in the red bars of the bottom three sub-

graphs in Figure 51: 21 participants (22.1%) in Say, 40 (42.1%) in Project, and 27 (28.4%) in

Project-Say selected “I never knew”. They are all of statistical significance.

We also analyzed the conditions where the projection indicators are accompanied by replay

and verbal indicators.

Adding replay (Replay-Project) or both replay and verbal indications (Replay-Project-Say)

also accelerates picking inference. Seen from the purple and more saturated blue bars in the third

and fourth replay subfigures (Replay-Project and Replay-Project-Say) in Figure 51, the number of

participants who inferred “when it was grasping” decreased compared to the Replay and Replay-

Say conditions that do not have any projection indicators (top two subfigures in Figure 51). And

the earlier event “When its hand was over the table” has more participants than the Replay and

Replay-Say conditions. The statistics for those two events are both of significant difference.

However, when adding verbal indicators to projection (Project-Say) or in the Say condition,

138



n.s.
***
***
**

***
n.s.

n.s.
****

****
***

*
***
**

n.s.
***
**

n.s.
****

****
**

n.s.
*

n.s.
n.s.

***
n.s.

***
****

***
**

*
**
**

n.s.
n.s.

n.s.
**

****
**

*

**
***

n.s.
****

***
***

*
***
***

n.s.

****
n.s.

n.s.
****

**
***
***
***
***

n.s.

****
n.s.

n.s.
****

***
***
**
**

***
n.s.

R
eplay

R
eplay−

S
ay

R
eplay−

P
roject

R
eplay−

P
roj.−

S
ay

S
ay

P
roject

P
roject−

S
ay

0 20 40 60

Other (Please elaborate)
When it was grasping.

When its hand was very close to the table before grasping.
When its hand was over the table.

When its arm started moving.
Before its arm started moving.
After its head stopped moving.

While its head was moving around.
Before its head started moving around.

I never knew.

Other (Please elaborate)
When it was grasping.

When its hand was very close to the table before grasping.
When its hand was over the table.

When its arm started moving.
Before its arm started moving.
After its head stopped moving.

While its head was moving around.
Before its head started moving around.

I never knew.

Other (Please elaborate)
When it was grasping.

When its hand was very close to the table before grasping.
When its hand was over the table.

When its arm started moving.
Before its arm started moving.
After its head stopped moving.

While its head was moving around.
Before its head started moving around.

I never knew.

Other (Please elaborate)
When it was grasping.

When its hand was very close to the table before grasping.
When its hand was over the table.

When its arm started moving.
Before its arm started moving.
After its head stopped moving.

While its head was moving around.
Before its head started moving around.

I never knew.

Other (Please elaborate)
When it was grasping.

When its hand was very close to the table before grasping.
When its hand was over the table.

When its arm started moving.
Before its arm started moving.
After its head stopped moving.

While its head was moving around.
Before its head started moving around.

I never knew.

Other (Please elaborate)
When it was grasping.

When its hand was very close to the table before grasping.
When its hand was over the table.

When its arm started moving.
Before its arm started moving.
After its head stopped moving.

While its head was moving around.
Before its head started moving around.

I never knew.

Other (Please elaborate)
When it was grasping.

When its hand was very close to the table before grasping.
When its hand was over the table.

When its arm started moving.
Before its arm started moving.
After its head stopped moving.

While its head was moving around.
Before its head started moving around.

I never knew.

Frequency

Manipulation Inference Timing

Figure 51: Participant’s responses to when they have inferred the picking location. The Say condi-
tion performs the best with 60+ correct participants but 20+ never know. Project and Project-Say
are at the second tier with fewer correct participants and more unknowing participants. In all replay
conditions, the top four in the figure, participants reported they know at a later event.
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fewer participants chose “I never knew”. Instead, 32.6%, 31 more participants (66.3% vs. 33.7%,

63 vs. 32) in the Say condition and 17.9%, 17 more participants (51.6% vs. 33.7%, 49 vs. 32)% in

the Project-Say condition inferred the picking location after “After its head stopped moving” (See

the green bars in Figure 51).

Thus, we can conclude that adding projection markers to physical replay makes participants’

picking inference faster, but not when included in verbal indicators. In terms of the maximum

number of participants who infer early, the verbal condition performs the best but many participants

(21, 22.1%) reported that they never know where the robot picked. To ensure almost all participants

infer the picking location, projection with replay (Replay-Project) and projection with both replay

and verbal indicators (Replay-Project-Say) are two better choices that are approximately the same.

For navigation inference timing, we conducted the same type of chi-square goodness-of-

fit test on the responses to the navigation timing questions in all conditions except for the Project

condition where timing is irrelevant because the robot projects throughout the video. Post-hoc

binomial tests with Holm-Bonferroni correction for pairwise comparisons are conducted when

there is a statistically significant difference revealed by the goodness-of-fit tests.

For replay conditions where the robot’s base moved, the chi-square goodness-of-fit test

shows a statistically significant difference across responses (p < 0.0001). Pairwise comparison

results are annotated on Figure 52.

As seen from the figure, around half of participants who experienced the Replay and Replay-

Say conditions (top two subfigures), 47 (49.5%) in Replay and 55 (57.9%) in Replay-Say, were

able to infer the ground obstacle location while the robot was in grid E (during left rotation, before

leaving for F; fourth cyan bars in Figure 52).

When projection indicators are added, the numbers dropped half to 28 (29.5%) in both

Replay-Project and Replay-Project-Say conditions. Instead, 26 (27.4%) participants, approxi-

mately the same as the dropped number, inferred the ground obstacle location at an earlier event

of “before the robot started moving” in the Replay-Project-Say condition (the first bar in the last
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Figure 52: Participant’s responses to when they have inferred where the ground obstacle was in
replay conditions. In summary, Replay-Project-Say performed the best, with 20+ participants
inferring at the earliest event: before the robot started moving. (Non-replay conditions, excluding
the Project condition where projection was always on, had their own options as the robot’s base
did not move during these conditions; See Figure 53 and 54.)
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Figure 53: Participant’s responses in the Say condition to when they have inferred where the
ground obstacle was. Most participants made the inference after the robot started speaking, more
than any option in the replay conditions shown in the previous figure (Figure 52). (The options
were only present in the Say condition as the robot did not move its base but just spoke.)

subfigure of Figure 52). For the Replay-Project condition, the dropped number of participants are

distributed to “when the robot was facing area A” and a later event of “while the robot was moving

towards the caddy table in grid C”, but unfortunately post-hoc binomial tests suggest that they may

happen by chance.

In the Say condition, binomial tests with Holm-Bonferroni correction suggest a statistically

significant difference across all options. Results are shown in Figure 53. 78.9% participants (75)

were able to make the ground obstacle inference “after it started speaking”. No participants re-

ported that they made the inference “before it started speaking”.

The result here is consistent with the immediately previous finding that Replay-Project-Say

accelerates the participants’ inference as the results suggest that verbal indicator is remarkably

effective.

In the Project-Say condition, we performed the same statistical test as in the Say condition

and results are shown in Figure 54. Sixty participants (63.2%) were able to know where the ground

obstacle was “before it started speaking (At the beginning of the video, with projection)”. While

only 30 participants (31.6%) reported they know it “after it started speaking“, the binomial tests

with Holm-Bonferroni correction, unfortunately, suggest that this might just happen by chance.

Nonetheless, comparing responses in the Say conditions to those in the Project-Say condition,

more than 60% more participants could make the inference with projection alone.
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Figure 54: Participant’s responses to when they have inferred where the ground obstacle was. More
than 60% of participants made the inference from the ground projection. (The options were only
present to the Project-Say condition as the robot did not move its base but made projection onto
the ground and spoke.)

Thus, we reach a mixed conclusion again, similar to the one for picking timing inference.

Including projection indications in replay condition, whether with verbal indications, defers the

inference from staying at its place (“While the robot was moving towards the caddy table in grid

E”) to leaving for the caddy (“While the robot was moving towards the caddy table in grid F”).

With projection indications only, more than 60% of the participants were able to make the inference

from the projection before it started speaking, which is suggested by analyzing the responses in

the Project-Say condition.

Finally, we analyzed the responses to the placement inference timing questions. The same

as other analyses in this section, we ran a chi-square goodness-of-fit test and it revealed a sta-

tistically significant difference (p < 0.0001). Results from post-hoc binomial tests with Holm-

Bonferroni correction for pairwise comparisons are shown in Figure 55.

Again, the Project condition has the most participants (50, 52.6%) who were able to infer

the placement position “After its head stopped moving” (the green bar in the second last subfigure

of Figure 55) while only 36 and 40 participants (37.9% and 42.1%) in the Say and Project-Say

conditions were able to do so after the same event. For replay conditions, fewer than eight partic-

ipants in all statistically significant events that happen before its hand over the caddy were able to

make the inference.

However, similar to the responses to the picking inference question, the Project condition
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Figure 55: Participant’s responses to when they have inferred which section of the caddy the object
was placed into. Participants in the Project condition made the earliest inference after the robot’s
head stopped moving. However, 30+ participants reported they never knew. Say and Project-Say
has the top performance because the participants elaborated on what they knew from the robot’s
speech. For replay conditions, arm movement significantly delays the inference.
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had the most participants (31, 32.6%) who chose “I never knew” (pink bar). Only a few partic-

ipants chose this option in the Replay, Replay-Project, and Replay-Project-Say conditions. The

responses to this option in other conditions, i.e. Replay-Say, Say, and Project-Say, are not statisti-

cally significant and may have just happened by chance.

For replay conditions, most responses are distributed in three late events when the robot’s

gripper is above the caddy to get closer and release the object: “When its hand was over the caddy”,

“When its hand was very close to the caddy before releasing the gearbox bottom”, and “When it

was releasing the gearbox bottom”.

It is worth mentioning that for the Say and Projection-Say conditions, 44 and 38 participants

(46.3% and 40.0%) chose to elaborate on a different choice. Upon analyzing these responses, all

participants said they knew when the robot said so, which is the same event as “After its head

stopped moving”. Therefore, the Say and Project-Say are the fastest conditions for participants to

infer the placement position. Compared to the replay conditions that we just discussed, the robot’s

physical arm movement delayed the inference.

Thus, the efficiency aspect of projection indicators in H6.3 is partially supported. Projection

indicators performed the best to help participants infer the ground obstacle as early as the obstacle

is indicated by projection. However, for inferring picking and placing locations, while projection

expedites the inference, it also prevents one-third of participants from making any inference (30 to

40 participants respectively – 31.6% to 41.1%).

6.4.4 H3 – Accuracy. More accurate causal inference with projection markers (not sup-

ported)

To test whether projection markers make causal inference more accurate, we analyzed the nonpara-

metric responses to participants’ confidence ratings in their answers to all three inference questions.

More accurate methods should make participants more confident.

For participants’ confidence in their picking inference responses (See Figure 56), we first
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Figure 56: Participant’s confidence levels in their responses to the picking inference question.
Generally, participants in replay conditions are more confident than those in replay conditions
(Confident or very confident in replay conditions vs. somewhat confident in non-replay condi-
tions).
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Figure 57: Participant’s confidence levels in their responses to the navigation inference question.
Participants’ confidence levels in the Project and Project-Say conditions are increased to confident
from somewhat confident in their picking inference. However, the statistical significances suggest
that participants are still more confident in replay conditions (more right-skewed).

conducted a Kruskal-Wallis H test and it reveals a statistically significant difference across con-

ditions (χ2(6) = 240.02, p < 0.0001). We then run post-hoc Mann-Whitney U pairwise com-

parisons with Holm-Bonferroni correction. Results show there are significant differences between

the Replay condition and the conditions of Say, Project, and Project-Say (all: p < 0.0001), be-

tween Replay-Say and the conditions of Say, Project, and Project-Say (all: p < 0.0001), between

Replay-Project and the conditions of Say, Project, and Project-Say (all: p < 0.0001), and between

Replay-Project-Say and the conditions of Say, Project, and Project-Say (all: p < 0.0001).

The results show that participants in replay conditions are more confident in their responses

than non-replay conditions, i.e., very confident in replay conditions vs. somewhat confident in

non-replay conditions.
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For participants’ confidence in their navigation inference responses (Figure 57), a Kruskal-

Wallis H test shows that there is a statistical significant difference across conditions (χ2(6) =

79.125, p < 0.0001). Post-hoc Mann-Whitney U pairwise comparisons with Holm-Bonferroni

correction show the statistically significant results between the Replay condition and the conditions

of Say (p < 0.0001), Project (p < 0.0001), and Project-Say (p < 0.01), between Replay-Say and

the conditions of Say (p < 0.0001), Project (p < 0.001), and Project-Say (p < 0.05), between

Replay-Project and the conditions of Say (p < 0.0001), Project (p < 0.001), and Project-Say (p <

0.05), between Replay-Project-Say and the conditions of Say (p < 0.0001), Project (p < 0.001),

and Project-Say (p < 0.05), and between Say and Project-Say (p < 0.01).

These results are statistically consistent with the data of picking inference confidence, plus a

statistical significance between Say and Project-Say. It is worth noting that participants’ confidence

raised to a median of confidence in Project and Project-Say from somewhat confident in picking

reference (compare the last two subfigures in Figure 57 with the last two in Figure 56). Although

the median value is increased, the statistically significant results suggest that participants in replay

conditions are still more confident, as seen to be more right-skewed in the left four subfigures in

Figure 57.

For participants’ confidence in their placement inference responses (Figure 58), unsurpris-

ingly, Kruskal-Wallis H test shows a statistical significant difference across conditions (χ2(6) =

53.436, p < 0.0001). Post-hoc Mann-Whitney U pairwise comparisons with Holm-Bonferroni cor-

rection show the statistically significant results between the Replay condition and the conditions

of Replay-Project-Say (p < 0.05), Project (p < 0.01), between Replay-Say and the conditions of

Replay-Project (p < 0.05) and Project (p < 0.0001), between Replay-Project and the conditions of

Replay-Project-Say (0.01) and Project (p < 0.05), between Replay-Project-Say and the conditions

of Say (p < 0.05) and Project (p < 0.0001), and between Say and Project (p < 0.05). For the

Project-Say condition, no statistically significant results were found.

These suggest that participants who experienced Project and Replay-Project projection meth-
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Figure 58: Participant’s confidence levels in their responses to the placement inference question.
Participants in the Project condition has more unsure ratings, while other condition has more par-
ticipants distributed in different confidence level ratings.
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ods are less confident than other non-projection replay conditions, i.e., somewhat confident vs.

confident. It is worth noting that after adding verbal indicators to Replay-Project (Replay-Project-

Say), participants become more confident. The Say condition itself and Project-Say also perform

as well as the first three replay conditions because there is no statistical significance between each

pair.

Thus, the accuracy aspect of H6.3 may not be supported through the confidence measure.

With projection alone, it is not more accurate than other replay conditions because people are less

confident in their inferences. Replay conditions perform well in almost all subtasks, while verbal

indicators make participants as confident as replay conditions in placement inference.

6.4.5 H6.4. The same workload in both verbal and projection conditions (mostly supported)

To investigate whether participants bear the same workload in both verbal and projection condi-

tions, we analyzed the Likert responses to the NASA Task Load Index questionnaire. Figure 59

shows a bar chart that visualizes the data.

We ran Kruskal-Wallis H tests across the subscales, which reveal statistical significant dif-

ferences for all: mental demand (χ2(6) = 42.3, p < 0.0001), temporal Demand (χ2(6) = 15.4, p <

0.05), performance (χ2(6) = 176, p < 0.0001), effort (χ2(6) = 31.1, p < 0.0001), and frustration

Level (χ2(6) = 93.5, p < 0.0001). We then ran post-hoc Mann-Whitney U pairwise comparisons

with Holm-Bonferroni correction and the results are in Figure 59.

Surprisingly, projection indicators alone had a median rating of somewhat high (coded as 1)

in the need of mental demand. Statistically significant differences were found between the Project

condition and each of the replay conditions (See column 1, row 6 in Figure 59). No significant

differences were found between the Projection condition and the Say and Project-Say conditions.

For temporal demand, every condition was rated low to some extent: either somewhat low

(coded as -1, in Project and Project-Say) or low (coded as -2, in all replay conditions and Say).

No statistically significant differences between the Project condition and all other conditions were
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Figure 59: Responses to the NASA Task Load Index questionnaire. Results from pairwise com-
parisons are shown and dashed lines indicate median values. In general, replay conditions and the
Say condition performed the best; No statistically significant differences were found between the
Say and Project conditions except for performance. See Section 6.4.5 for more details.
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found except for the Replay-Project-Say condition.

In terms of participants’ performance, the Project condition is the only case not rated good

to some extent – the median rating is neither good nor bad. Statistically significant differences

were found between the Project condition and all other conditions, in which all replay conditions

are rated as good to their performance (coded as 2) and the Say and Project-Say conditions are

reported as somewhat good (coded as 1).

In the effort ratings, participants rated projection indicators only (the Project condition) as

somewhat high (coded as 1). Statistical significant results are found between Project and each

replay condition.

For frustration levels, statistically significant differences were found between each replay

and non-replay condition pair. Participants rated replay conditions as low frustration, Say as some-

what low, and Project as well as Project-Say neither low nor high.

In summary, replay conditions and the Say condition generally performed the best.

Thus, H6.4 is mostly supported. Participants experienced the same workload in the Say and

Project conditions for four subscales of mental demand (neutral to somewhat high, n.s.), temporal

demand (low to somewhat low, n.s.), effort (neutral to somewhat high, n.s.), and frustration level

(somewhat low to neutral). There is only one slight statistical significance (p < 0.05) between the

Say and Project conditions: the performance subscale, somewhat high in Say vs. neutral in Project.

6.4.6 H6.5. A robot is more trustworthy with projection markers (not supported)

We analyzed Likert responses to the four subscales to measure trust: predictability, reliability, and

competence in addition to trust. The ratings are visualized in Figure 60.

Similar to the NASA Taskload questionnaire, we ran Kruskal-Wallis H tests across all sub-

scales and statistically significant results are revealed in all of them: predictability (χ2(6) =

24.8, p < 0.001), reliability (χ2(6) = 23.9, p < 0.001), competence (χ2(6) = 49.8, p < 0.0001),

and trust (χ2(6) = 30.7, p < 0.0001). Then we ran post-hoc Mann-Whitney U pairwise compar-
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Figure 60: Responses to the Muir trust questionnaire [120]. Regarding predictability, participants
rated non-replay conditions less predictable. For reliability, when accompanied with replays or
with both replays and verbal indicators, projection markers improve reliability. In terms of compe-
tence, adding replay to either Say or Project or both increases the competence rating. For the direct
trust measure, replay conditions have more positive ratings than their non-replay counterparts. See
Section 6.4.6 for more details.
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isons with Holm-Bonferroni correction. The results are also annotated in Figure 60.

In terms of predictability, projection and verbal markers only make the robot more pre-

dictable with replays or with both replays and verbal indicators. We found four pairs of statistically

slightly significant differences, as seen in the first column of Figure 60, between Replay-Project

and Say, between Replay-Project, Replay-Project-Say and Say, Project.

Approximately 25% more participants reported that the verbal indications alone and pro-

jection indicators alone (i.e., Say and Project, 50 and 51 participants – 52.6% and 53.7%) are less

predictable (somewhat predictable, predictable, and very predictable) than the Replay-Project or

the Replay-Project-Say condition (75 and 74 participants – 78.9% and 77.9%) where projection

or both projection and verbal indications are included. This suggests that the addition led to the

differences. As a result, the number of participants who reported unpredictable decreased half

from 34 and 32 (35.8% and 33.7%) in the Replay-Project and the Replay-Project-Say condition

conditions to 16 and 15 (16.8% and 15.8%) in the Say and Project conditions.

In the reliability ratings, we reach a similar conclusion as predictability: projection markers,

but not verbal markers, only make the robot more reliable with replays or with both replays and

verbal indicators. Specifically, two statistically slightly significant differences were found between

Replay-Project and Project, and between Replay-Project-Say and Project. Fewer participants re-

ported reliability positively in the Project condition: 83 participants (87.4%) in both Replay-Project

and Replay-Project-Say conditions had positive reliability ratings (row 3 and 4 in column 2 of Fig-

ure 60) while 22.1% and 28.5% fewer participants, only a total of 62 and 56 participants (65.3%

and 58.9%) agreed that they can count the robot to do the job in the Project condition (second-last

row in column 2).

For competence (third column in Figure 60), statistically significant differences were found

between {Replay-Say, Replay-Project, Replay-Project-Say} and {Say, Project}, which indicate

that adding physical replay to either Say or Project or both increases the robot’s competence from

neutral to somewhat high. In addition, statistical significance also exists in Project-Say versus
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Replay-Project or Replay-Project-Say, all of which include projection indicators.

Comparing Replay-Project with Project-Say, in which physical replays replaced verbal in-

dicators, 25 (26.3%) more participants positively reported the robot’s competence (74 in Replay-

Project vs. 49 in Project-Say, 77.9% vs. 51.6%). As seen in Figure 60, this resulted in a more

right-skewed distribution for competence in the Replay-Project condition (column 3, row 3) than

the one for the Project-Say competence responses (column 3, row 7).

Comparing Replay-Project-Say with Project-Say (column 3, row 4 vs. row 7 in Figure 60),

in which physical replay is added to projection and verbal indicators, we see almost the same

effect (only two participants fewer) that 23 (24%) more participants positively rated the robot’s

competence (72 in Replay-Project-Say vs. 49 in Project-Say, 75.8% vs. 51.6%).

For the more direct trust ratings, statistically significant differences were found between

{Replay-Project, Replay-Project-Say} and non-replay conditions {Say, Project, Project-Say}. More

participants reported “trust” (coded as 2) in Replay-Project (36 participants, 37.9%) and Replay-

Project-Say (31, 32.6%) than non-replay conditions (15 – 15.8% in Say, 19 – 20% in Project, and

19 – 20% participants in Project-Say).

Thus, H6.5 is not supported. For the mobile manipulation task in the Projection condition

without additional replay or verbal or both indicators, participants rated the robot as less trust-

worthy, less predictable, less reliable (less extent to predictability), and less competent to do the

job.

6.4.7 H6.6. Less workload when presented both verbal and projection markers (almost not

supported)

This last hypothesis can be tested the same way as H6.4 with visuals from Figure 59. For the

responses in the Project-Say condition, where both verbal and projection markers are presented,

only the reported performance is better than the Project condition, where participants reported that

their performance is somewhat high versus neutral in the Project conditions.
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For other statistically significant differences, Project-Say has higher mental demand (neu-

tral) than the Replay and Replay-Project-Say conditions (Both were rated somewhat low) and has

higher frustration level (neutral) than all replay conditions (All were rated low).

In the temporal demand and effort ratings, no significant differences were found.

Thus, H6.6 is almost not supported. Only in one single pair comparison, which is between

Project-Say and Project in the performance metric, Project-Say has a better median rating (some-

what high vs. neutral).

6.5 Discussion and Recommendations

Surprisingly, all of our hypotheses about the use of verbal and projection markers alone were either

partially supported (H6.1, H6.2, H6.3 – Efficiency, H6.4, and H6.6) or not supported at all (H6.3

– Accuracy and H6.5), although we believed that instant projection directly onto the operating

environment would be more effective and efficient in terms of causal inference as well as mental

workload.

In contrast, a combination of physical replays with the verbal and/or projection markers

have shown better effectiveness and efficiency as well as lower workload and increased trust. This

is consistent with the findings of our previous study [81] that physical arm movement should be

accompanied by verbal explanations.

6.6 Effectiveness of inferring missing causal information from the past

With verbal indicators (Section 6.4.1), participants were able to effectively infer where the robot

placed the gearbox bottom, at the same level as other conditions except for Project, as shown in

Figure 50. However, the verbal indicators did not allow participants to infer where the robot picked

the misrecognized object nor where the ground obstacle was during navigation. In both the picking

and navigation inferences, half of the participants chose a place near the actual answer, as shown in

Figures 48 and 49. Thus, verbal indicators using relative directional words should not be used alone
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for picking and navigation inference. Rather, arm movements with the grasping behavior should be

used for picking as almost all of the participants in all replay conditions made the correct inference,

as shown in Figure 48. Physical replay and projection, instead of speech alone, should be included

for better efficiency in navigation tasks because almost all of the participants in all conditions,

except for the Say condition, correctly inferred where the ground obstacle was, as shown in Figure

49.

Projection is remarkably good for navigation inferences (Section 6.4.2), on par with replay

conditions, but only half of the participants were correct for picking inferences (see the bottom

two rows in Figure 48) and no statistical significance was found for placement inferences (see

the second last row in Figure 50). Without looking at when the inference happens, projection

markers are faster if a person is looking for some causal inference during a robot’s navigation task,

because physical movements from the robot’s base take time to replay. For picking and placing

inferences, projection and verbal markers should be present with arm movement to accelerate

the causal inference process. Otherwise, these two indicators alone deteriorate people’s causal

inference performance, shown from the last three rows in Figure 48 and the second-last row in

Figure 50.

As shown in Figure 50, placement inference effectiveness is different because almost all

participants in at least one condition in the other inference types (picking and navigation) were

able to correctly infer the causal information (Figure 48 and 49), but only around 60 (63.2%) in all

95 participants did so for placement inference in every condition except for the Project condition,

for which all responses were not significant.

The difficulty with placement inference might be that the gripper did not move into the

compartment where the object was dropped. Not moving inside the square caddy compartment,

compared with another manipulation subtask – picking, where the robot moved to the target object

to be grasped – made it more difficult to infer which caddy section the gripper was above. Even

with projection into the caddy section, we might see better results if participants were next to the
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robot, in person, to see the projection inside of the caddy, rather than viewing the projection on a

recording at a fixed angle.The recommendation here is still to have a multimodal approach with

physical replay, verbal and projection indications to inform people into where an object is placed,

but we see that additional information might be useful. For example, instead of using an exact

replay, an enhanced replay might be better, where the robot would move its gripper into the caddy

section into which the object had been dropped, since it is harder for people to make the spatial

inference over a set of concave compartments. Future work could investigate cases with placement

in concave objects with the robot using additional physical indicators to improve inference-making

of where the object was placed.

6.7 Efficiency to infer past missing causal information

As discussed in Section 6.4.3, most participants reported they inferred the picking location during

the last three events after the robot’s arm moved close to the object, as shown in the top four rows

in Figure 51. Participants in non-replay conditions, shown in the last three rows of Figure 51, made

early inferences and reported before the robot’s head started moving, when the head points to the

projection or when the robot starts speaking or both. However, 31 (32.6%) of the 95 participants

in the Project condition reported they never knew, and there were 11 (11.6%) participants who

never knew in each of the other two non-replay conditions, Say and Project-Say, although no

statistical significance was found, shown from the top bar in the last three rows in Figure 55.

This suggests that both and eye-gazing cue and the verbal/projection indicators are not enough for

picking inference; in practice, replay should be included in these cues.

From the analysis of participants’ responses to the navigation timing questions with three

different responses (Figures 52 to 54), two-thirds of the participants were able to make the infer-

ence right after seeing the projection. (The other third had no statistical significance; see Figure

54). Verbal indicators alone are the best overall if we only consider statistically significant results

(We did see non-significant results from responses, shown from Figure 53).
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For the replay conditions, we saw interesting reactions from participants. While the per-

formance in the Replay-Say condition is on par with Replay (top two rows in Figure 52), adding

projection indicators delays the inference (the third row in Figure 52). However, with both verbal

and projection indicators (Replay-Project-Say) the fourth row in Figure 52), 26 (27.4%) of the 95

participants reported that they knew before the robot started moving, while there were fewer than

10 participants indicating such when only one indicator type was used (as shown by the first bar of

the middle two rows in Figure 52).

Therefore, our recommendation for making the navigation inference faster is to only use

projection, as shown in Figure 54. This is consistent with previous research on navigation path

visualization from other researchers (e.g., [41, 33]). If projection is not available, we recommend

using verbal indicators without any replay, shown in Figure 53 rather than simply replaying the

base movement.

For placing, we see the same pattern as picking. As shown in Figure 55, participants’

inference timing in Replay conditions (top four rows) is distributed to three later events after the

robot’s gripper is close to the caddy. In the Project condition, there are 31 (32.6%) participants not

knowing which caddy section the object was placed into, while 60 (63.2%) participants reported

they knew after the robot’s head stops moving. The Say and Project-Say condition perform the best:

after analyzing responses to the “other” option, ∼ 80 participants in both conditions were able to

infer after its head stopped moving. So, in practice, to accelerate people’s placement inference,

verbal indicators should be used.

As the analysis above about effectiveness and efficiency is rather complex, we created Table

8 to ease comprehension and reinforce our recommendations.

6.8 Inference accuracy and confidence of past missing causal information

Regarding the accuracy aspect of inference (Section 6.4.4), the responses show a simpler pattern.

In general, replay conditions make participants more confident in their picking and navigation
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Table 8: The effectiveness and efficiency of the conditions in inference-making. Shaded boxes are
the best values in each column.

Picking Inference Navigation Inference Placement Inference
Where was the object? Where was ground obsta-

cle?
Which section of caddy?

Effective?1 When?2 Effective?1 When?2 Effective?1 When?2

Fig. 48 Fig. 51 Fig 49 Fig. 52–
54

Fig. 50 Fig. 55

Replay 91.6% Above table 83.2% Towards E 58.9% Close to
caddy

Replay-Say 97.9% Above table 78.9% Towards E 60.0% Over caddy to
release

Replay-
Project

93.7% Above table 92.6% Towards F
(Before E)

67.4% Close to
caddy

Replay-
Project-Say

93.7% Above table 91.6% Towards F
& E (Even
number)

56.8% Over caddy to
release

Say 8.4%
(49.5%
nearby)

Head
stopped
(22.1%
never knew)

40.0%
(49.5%
nearby)

Speech 32.6% Head stopped
& speech

Project 50.5% Head
stopped
(42.1%
never knew)

93.7% N/A3

(Same as
Project-
Say
below)

32.6% Head stopped
(32.6% never
knew)

Project-Say 55.8% Head
stopped
(28.4%
never knew)

83.2% Projection 61.1% Head stopped
& speech

1. See Section 6.4.1 for relevant results and Section 6.6 for a full discussion.
2. The event with highest number of responses is given. See Section 6.4.2 for relevant results and
Section 6.7 for a full discussion.
3. There was no timing in the Projection condition since it has projection in the whole video.
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inference choices, as shown in Figures 56 and 57. For placement, people are more confident when

there are both physical replay and verbal indicators, shown in Figure 58. Thus, we recommend

physical replays to increase confidence level for picking and navigation inferences. For placement,

we suggest including verbal indicators with physical replay.

6.9 Mental workload for past causal information inference

In terms mental workload (Sections 6.4.5 and 6.4.7), replay conditions generally performed the

best. As shown in Figure 60, the Project condition is largely a few Likert item levels worse and

the Say condition is also somewhat the same. The reason for the Project case might be that even

the projection is directly on the operating environment, its meaning is rather implicit even though

the projection itself is explicit. So, in practice, projection indicators should be combined with the

physical replay to achieve other benefits discussed throughout this section.

6.10 Perceived trust as a result of causal inference indications

As shown in Figure 60 of Section 6.4.6, conditions with multiple cues have more positive ratings

in the trust subscales, including predictability, reliability, competence, and trust. In general, replay

conditions perform better than non-replay conditions, and Replay-Project and Replay-Project-Say

are among the best two, in which there are always statistically significant results found when

compared with non-replay conditions. So, we would recommend the Replay-Project and Replay-

Project-Say conditions to achieve slightly better results.

6.11 Limitations and Future Work

In the study, we have placed the camcorder at the best viewing position and angle where a person

can view the whole relevant scene and the robot. However, in reality, humans are not static as

the camcorder: when not in a crowd, they may move around to better understand the event. We

thought of recording multiple videos and placing them in a grid and present them to participants.
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However, we had the concern that this may distract their attention or increase workload, requiring

them to re-focus as they move from one sub-video to another to look at different angles. Ideally,

we can simulate the human walking path by moving the camcorder. However, the walking path

would likely be different from person to person because the path is driven by the particular human’s

thought process, thus it becomes a problem of its own. As future work, online studies with videos

from multiple angles would be interesting to pursue, as would in person studies.

In addition, we tried to discretize time by having a fixed set of timing events for picking,

navigation, and placing during the mobile manipulation task. In the past [84], we have analyzed the

timing by recording videos of participants and extracting the timing information frame by frame.

In the future, one may do the same in order to get more accurate data directly from the continuous

variable of time.

To measure which method is more accurate, we measured the perceived accuracy using the

subjective confidence metric. However, being more confident in inference-making may not be the

same as the communication method being accurate. Likewise, these are not necessarily causal of

each other. As there will be more research into comparisons of different communications, future

researchers can explore different metrics or summarize these comparison work.

Like trust, causal inference-making is a process, rather than a single-time-point event. Peo-

ple may start inferring the past missing causal information at an earlier event but unsure yet, and

then become more confident as the robot finishes the task. While we did attempt to capture this by

having only part of the task sequence, e.g., only having projection in the Project condition, a better

method would be implementing the think-aloud protocol or ask participants to finish the survey

during the process to capture the change over time, just like Desai et al. did to study trust [47].

Lastly, as we drew inspiration from the human imitation literature, we can also learn from

the teaching literature. It is well-known that learners have preferences in the communication chan-

nels, i.e., visual learners and auditory learners [70]. If robots could know this information before-

hand, robots can better accommodate individual differences to produce better inference outcomes.
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This is particularly important for personal robots. A study into this preference can greatly comple-

ment this work where we targeted the general population.

6.12 Conclusion

In this work, we have investigated how a robot could communicate past causal information in a

mobile manipulation scenario, encompassing picking, navigation, and placement. Physical replay

with head, arm, and base movement is implemented with verbal and projection indicators.

In general, results suggest a multimodal approach: combining physical replay with verbal

and projection indicators performs the best in helping participants to infer where the robot picked

an object, where the ground obstacle is, and where the robot has placed an object into a caddy.

In addition, we found that projection markers alone are remarkably efficient in helping people

make navigation inferences, while verbal indicators are exceptionally efficient for making placing

inferences.
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7 Conclusions and Future Work

7.1 Conclusions and Contributions

This dissertation systematically examined multiple aspects of causal robot explanations. As the

dissertation title implies, we treated robot explanation as a process that gradually unfolded.

From the human-subjects study on desired robot explanations, we were able to find many

insights into the robot explanations that people prefer, from the need to couple non-verbal cues with

verbal explanations, to the preference to address explainees and then provide concise explanations

so people can ask a few follow-up questions for more details.

We also contributed explanation generation algorithms, in which roboticists can present

robot tasks as action sequences in behavior trees and use our open-sourced algorithms to generate

failure or shallow hierarchical explanations, which not only provide succinct explanations but also

answer follow-up questions, as informed by the study above.

Finally, we investigated explanation communication with a contribution of implementation

of projection mapping, an instant and salient robot-specific communication method that humans do

not have. In addition, through another human-subjects experiment, we expanded our knowledge

of how a robot could aid people to infer missing causal information in a mobile manipulation

task, encompassing picking, navigation, and placement tasks, which resulted in replaced objects.

Results suggest a multimodal approach: using all physical replay, verbal, and projection indicators

will lead to better aid in inference-making, less mental workload, and more trustworthy robots.

7.2 Future Work

While we scoped the research in this dissertation to focus on important issues in the explanation

process, there is still much work to be done to fully achieve causal robot explanations.

In general, the work needs to be expanded to investigate different types of robots and task

domains. In this dissertation, we have used the manipulator robot Baxter and the mobile manipu-
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lator robot Fetch. Mobile robots with or without manipulation capabilities were not investigated.

It would be interesting to confirm whether the findings are also applicable to other types of robots.

Two major categories are

• Legged robots or humanoids – such as the four-legged Spot from Boston Dynamics and the

two-legged humanoid Valkyrie from NASA and Digit from Agility Robotics, and

• Wheeled robots or autonomous vehicles, from small wheeled robots for delivery to a full-

scaled Tesla car.

Robot dogs have become very popular – Boston Dynamic’s YouTube videos36 are constant

hits on YouTube and have amassed millions of views. However, research with robot dogs is rare

in the human-robot interaction literature and they have not been the platform used to study robot

explanations. These robot dogs have been typtically used without speaking, as animals. However,

unlike actual dogs that can be well-understood by their humans, robot dogs might become hard to

understand once robot developers program them to exhibit non-dog-like behaviors, because people

could not reuse their experience with animal dogs to understand a dog-shaped robot with non-dog-

like behaviors.

Mobile robots or autonomous vehicles are increasingly used for delivery and are replacing

some manual vehicles. As they autonomously make decisions on the sidewalks and roads, which

were mainly built for pedestrians and human drivers, these autonomous entities need to estimate

the understandability of their resulted behaviors from their decisions. Unlike a worker who might

be trained how to work with a robot, pedestrians and drivers are bystanders who may have limited

knowledge of the robots.

With the current push towards legged robots, mobile robots, and autonomous vehicles, we

need to expand our knowledge of what people understand or do not understand about these robots

36https://www.youtube.com/channel/UC7vVhkEfw4nOGp8TyDk7RcQ
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and how could the robots could provide explanations to improve people’s understanding of the

systems.

In addition to investigating different types of robots, we also need to investigate different

task domains and applications. To make our findings more generalizable, we have investigated both

manipulation and navigation tasks in a common handover and an assembly scenario. However, as

robots become ubiquitous, there are different task domains and interaction scenarios that may

present new challenges for robot explanations. Examples include social robots providing support

in retail stores, service robots delivering dishes in restaurants, and underwater robots used for

inspection.

Additional future research should be conducted on proactive explanations. In this dis-

sertation, robots act as passive agents: they offer explanations with the assumption that humans

will understand or they will ask follow-up questions, i.e., human-initiated explanations. What is

not known yet is, as I just mentioned, how robots could estimate the understandability of the re-

sulted behaviors from their decisions and offer explanations proactively. This not only requires

their understandability estimate to initiate explanation but also estimating humans’ understanding

of those explanations to proactively continue explaining, rather than waiting for the explainee to

ask follow-up questions.

While this may sound like long-term work, a good starting point might be conducting a

human-subjects study to experiment with a set of first explanations and, after a short break, follow

up explanations, which simulates the scenario where a human is trying to understand the first

explanation. This experiment could also offer different follow-up explanations to estimate the

understandability of the first explanation. With the results and data analysis, we could then find a

way to encode such explanation understandability estimates in algorithms.

We hope that this dissertation has laid the foundation and paves the way to improved human-

robot interaction, powered by robots capable of providing explanations about their actions and

capabilities.
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Towards a unified behavior trees framework for robot control. In 2014 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 5420–5427.

[111] Akihiro Matsufuji and Angelica Lim. 2021. Perceptual Effects of Ambient Sound on an
Artificial Agent’s Rate of Speech. In Companion of the 2021 ACM/IEEE International Con-
ference on Human-Robot Interaction. 67–70.

[112] Nikolaos Mavridis. 2015. A review of verbal and non-verbal human–robot interactive com-
munication. Robotics and Autonomous Systems 63 (2015), 22–35.

[113] Tim Miller. 2018. Explanation in artificial intelligence: Insights from the social sciences.
Artificial Intelligence (2018).

[114] Tim Miller. 2019. Explanation in artificial intelligence: Insights from the social sciences.
Artificial Intelligence 267 (2019), 1–38.
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and Aneesh Chauhan. 2014. A perceptual memory system for grounding semantic rep-
resentations in intelligent service robots. In 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 2216–2223.

[130] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. 2016. Wavenet: A
generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016).

[131] P. F. Palamara, V. A. Ziparo, L. locchi, D. Nardi, P. Lima, and H. Costelha. 2008. A Robotic
Soccer Passing Task Using Petri Net Plans. In Proceedings of the 7th International Joint
Conference on Autonomous Agents and Multiagent Systems: Demo Papers (AAMAS ’08).
International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC,
1711–1712.

[132] Stefan Palan and Christian Schitter. 2018. Prolific.ac–A subject pool for online experiments.
Journal of Behavioral and Experimental Finance 17 (2018), 22–27. Available at https:
//prolific.co/.

[133] Chris Paxton, Andrew Hundt, Felix Jonathan, Kelleher Guerin, and Gregory D Hager. 2017.
CoSTAR: Instructing collaborative robots with behavior trees and vision. In 2017 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 564–571.

[134] Chris Paxton, Felix Jonathan, Andrew Hundt, Bilge Mutlu, and Gregory D Hager. 2018.
Evaluating methods for end-user creation of robot task plans. In 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE, 6086–6092.

[135] Chris Paxton, Nathan Ratliff, Clemens Eppner, and Dieter Fox. 2019. Representing Robot
Task Plans as Robust Logical-Dynamical Systems. In 2019 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). IEEE. To appear.

[136] Elizabeth Phillips, Xuan Zhao, Daniel Ullman, and Bertram F Malle. 2018. What is Human-
like? Decomposing Robots’ Human-like Appearance Using the Anthropomorphic roBOT
(ABOT) Database. In Proceedings of the 2018 ACM/IEEE International Conference on
Human-Robot Interaction. 105–113.

[137] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y Ng. 2009. ROS: an open-source Robot Operating System. In ICRA
Workshop on Open Source Software. 5.

[138] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y Ng. 2009. ROS: an open-source Robot Operating System. In ICRA
workshop on open source software, Vol. 3. Kobe, Japan, 5.

[139] Rubanraj Ravichandran, Erwin Prassler, Nico Huebel, and Sebastian Blumenthal. 2018. A
Workbench for Quantitative Comparison of Databases in Multi-Robot Applications. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 3744–3750.

178

https://prolific.co/
https://prolific.co/


[140] Michael A. Rosen, Eduardo Salas, Davin Pavlas, Randy Jensen, Dan Fu, and Donald Lamp-
ton. 2010. Demonstration-Based Training: A Review of Instructional Features. Human
Factors 52, 5 (2010), 596–609.

[141] Ismael Sagredo-Olivenza, Pedro Pablo Gómez-Martı́n, Marco Antonio Gómez-Martı́n, and
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Appendix A Full Results from the Studies in Desired Robot Explanation

A.1 Internal Consistency (2019 Study vs 2020 Study)

Table 9: Explanation Measure Items
Unexpectedness (Cronbach’s α = 0.80 vs. 0.70)
1. I found the robot’s behavior confusing.
2. The robot’s behavior matched what I expected. (Reversed)
3. The robot’s behavior surprised me.

Need (Cronbach’s α = 0.74 vs. 0.65)
1. I want the robot to explain its behavior.
2. The robot should not explain anything about its behavior. (Reversed)

Human-Robot Difference (Cronbach’s α = 0.49 vs. 0.60)
1. There should be no difference between what a robot says to explain its behavior and
what a person would say to explain the same behavior.
2. If a person did what the robot did, they should both explain the same behavior in the
same way.

Summarization (Cronbach’s α = -0.57 vs. -0.77; 0.65 vs. 0.56 if Q1 is dropped)
1. The robot should give a very detailed explanation. (Reversed)
2. The robot should concisely explain its behavior.
3. The robot should give a summary about its behavior before giving more detail.
* Likert items are coded as -3 (Strongly Disagree), -2 (Disagree), -1 (Moderately Dis-
agree), 0 (Neutral), 1 (Moderately Agree), 2 (Agree), and 3 (Strongly Agree).

Cronbach’s α for Need dropped from 0.74 to 0.65. The reason is possibly that the second

Need question is phrased as a double negative and difficult to understand. To answer, it becomes “I

(strongly/moderately) disagree that the robot should not explain anything about its behavior”. We

plotted the responses to both questions and found that they do not belong to the same distribution.

Specifically, responses to the second question are not normally distributed. We thus analyzed the

first Need question and present the results in Appendix A.3.
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A.2 Unexpectedness

A.2.1 Unexpectedness (interaction effect): No change
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Figure 61: Interaction plot of the unexpectedness responses (original result from the 2019 Study).
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Figure 62: Interaction plot of the unexpectedness responses (replication result from the 2020
Study).
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Figure 63: Interaction plot of the unexpectedness responses (combined result).

In the 2019 Study, no interaction effect was suggested by a two-way between-subjects fac-

torial ANOVA. In the replication (2020 Study), the same ANOVA test suggested there might be an

183



interaction effect (p < 0.001) but post-hoc pairwise comparisons using Tukey’s test with Holm-

Bonferroni correction did not find a statistical significance between No Cue conditions (leftmost

column in Figure. 65).

In terms of main effects in the 2019 Study, a two-way between-subjects factorial ANOVA

revealed 2 statistically significant main effects in the original experiment for both Headshake

(F (1, 360) = 15.30, p < 0.001) and Execution Type (F (2, 360) = 11.98, p < 0.0001).

In the 2020 Study, main effects were found again for Headshake (F (2, 360) = 7.07, p <

0.001) and Execution Type (F (2, 360) = 11.90, p < 0.0001).
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A.2.2 Unexpectedness (bar chart)
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Figure 64: The distribution of Unexpectedness responses with median lines (original result from
the 2019 Study).

Comparing Figure 64 and Figure 65, Look & Point with Headshake (top right) changed

for H0 : µ = 0, meaning participants neither disagreed nor agreed that the Look & Point with

Headshake is unexpected. This statistically significant change led to pairwise comparison changes

for the condition (H0 : µi = µj), in addition to pairwise comparison changes for the conditions in

the left 2 columns.
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Figure 65: The distribution of Unexpectedness responses with median lines (replication result from
the 2020 Study).
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Figure 66: The distribution of Unexpectedness responses with median lines (combined result).
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A.2.3 Unexpectedness (box plot)
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Figure 67: Boxplot of Unexpectedness responses (original result from the 2019 Study).
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Figure 68: Boxplot of Unexpectedness responses (replication result from the 2020 Study).
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Figure 69: Boxplot of Unexpectedness responses (combined result).
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A.3 Need (Question 1): Same conclusions

H0: mean estimate = 0
****

Pairwise:
n.s. for all

H0: mean estimate = 0
****

Pairwise:
n.s. for all

H0: mean estimate = 0
****

Pairwise:
n.s. for all

H0: mean estimate = 0
*

Pairwise:
n.s. for all

H0: mean estimate = 0
****

Pairwise:
n.s. for all

H0: mean estimate = 0
*

Pairwise:
n.s. for all

No Cue Without Headshake
(Mean estimate =  0.89

Look Without Headshake
(Mean estimate =  0.41

Look & Point Without Headshake
(Mean estimate =  0.54

No Cue With Headshake
(Mean estimate =  1.21

Look With Headshake
(Mean estimate =  1.10

Look & Point With Headshake
(Mean estimate =  1.13

−3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3

0

10

20

0

10

20

Need (Questions 1)

F
re

qu
en

cy

Figure 70: The distribution of Need (questions 1) responses with median lines (original result from
the 2019 Study).

The conclusion about the need to explain still holds. To analyze the results, we used the

same significance tests as the ones in Section 3.4.2.

A.3.1 Results for 2019 Study (Figure 70)

A between-subjects factorial ANOVA did not show a statistically significant interaction between

Headshake and Execution Type, but found a statistically significant main effects for Headshake

(F (1, 360) = 11.10, p < 0.001) but not Execution Type for explanation scores.

Before we conducted pairwise comparisons across conditions, we used the ANOVA model

to calculate estimated marginal means of all conditions and performed multiple comparisons with

Holm-Bonferroni correction [89] to test whether these means significantly deviate from 0 (H0 :

µ = 0). Results showed statistical significance across all conditions:
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Figure 71: The distribution of Need (questions 1) responses with median lines (replication result
from the 2020 Study).

• Without headshake:

– Look & Point: 0.54± 0.20, p < 0.0001

– Look: 0.41± 0.20, p < 0.001

– No Cue: 0.89± 0.20, p < 0.0001

• With headshake:

– Look & Point: 1.13± 0.20, p < 0.0001

– Look: 1.10± 0.20, p < 0.0001

– No Cue: 1.21± 0.20, p < 0.0001

Pairwise comparisons were conducted with Tukey’s test (H0 : µi = µj), not revealing any

statistically significant differences between the Execution Type conditions.
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Figure 72: The distribution of Need (questions 1) responses with median lines (combined result).

A.3.2 Results for 2020 Study (Figure 71)

A between-subjects factorial ANOVA did not show a statistically significant interaction between

Headshake and Execution Type, but found statistically significant main effects for Headshake

(F (1, 360) = 4.96, p < 0.05) and Execution Type (F (2, 360) = 4.01, p < 0.05) for explanation

scores.

Before we conducted pairwise comparisons across conditions, we used the ANOVA model

to calculate estimated marginal means of all conditions and performed multiple comparisons with

Holm-Bonferroni correction [89] to test whether these means significantly deviate from 0 (H0 :

µ = 0). Results showed statistical significance across all conditions (p < 0.0001):

• Without headshake:

– Look & Point: 0.87± 0.19, p < 0.0001

– Look: 0.93± 0.19, p < 0.001
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– No Cue: 1.07± 0.19, p < 0.0001

• With headshake:

– Look & Point: 0.77± 0.19, p < 0.0001

– Look: 1.67± 0.19, p < 0.0001

– No Cue: 1.46± 0.19, p < 0.0001

Pairwise comparisons were conducted with Tukey’s test (H0 : µi = µj), revealing only a

p < 0.05 statistically significant difference between Look with Headshake and Look & Point with

Headshake.

A.3.3 Results for both experiments combined (Figure 72)

A between-subjects factorial ANOVA did not show a statistically significant interaction between

Headshake and Execution Type, but found statistically significant main effects of Headshake (F (1, 360) =

16.10, p < 0.0001) but not Execution Type for explanation scores.

Before we conducted pairwise comparisons across conditions, we used the ANOVA model

to calculate estimated marginal means of all conditions and performed multiple comparisons with

Holm-Bonferroni correction [89] to test whether these means significantly deviate from 0 (H0 :

µ = 0). Results showed statistical significance across all conditions (p < 0.001):

• Without headshake:

– Look & Point: 0.75± 0.13, p < 0.0001

– Look: 0.68± 0.14, p < 0.001

– No Cue: 1.00± 0.14, p < 0.0001

• With headshake:

– Look & Point: 0.96± 0.13, p < 0.0001
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– Look: 1.37± 0.13, p < 0.0001

– No Cue: 1.35± 0.13, p < 0.0001

Pairwise comparisons were conducted with Tukey’s test (H0 : µi = µj), not revealing any

statistically significant differences between the Execution Type conditions.
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A.4 Need: Statistical significance remains the same

A.4.1 Need (interaction effect): No change, still no interaction effect
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Figure 73: Interaction plot of the unexpectedness responses (original result from the 2019 Study).
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Figure 74: Interaction plot of the Need responses (replication result from the 2020 Study).
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Figure 75: Interaction plot of the Need responses (combined result).

No interaction effect was found in neither the original experiment nor the replication.

For main effects, there were no changes in terms of whether statistical significance was

found and just changes significant p values. The main effect of Headshake was changed from

193



F (1, 360) = 14.99, p < 0.0001 to F (1, 360) = 5.32, p < 0.05. The main effect of Execution Type

was changed from F (1, 360) = 3.31, p < 0.05 to F (1, 360) = 2.77p < 0.05.

194



A.4.2 Need (bar chart): Same Conclusions
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Figure 76: The distribution of Need responses with median lines (original result from the 2019
Study).

There were no changes for H0 : µ = 0, meaning participants still agreed that the robot

should explain across all conditions, we found statistically significant differences between 2 pairs

in pairwise comparisons – still remaining to agree. They were between Look with Headshake and

Look & Point with Headshake (p < 0.01) and Look with Headshake and Look without Headshake

(p < 0.05).
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Figure 77: The distribution of Need responses with median lines (replication result from the 2020
Study).
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Figure 78: The distribution of Need responses with median lines (combined result).
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A.4.3 Need (box plot)
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Figure 79: Boxplot of the Need for explanation responses (original result from the 2019 Study).
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Figure 80: Boxplot of the Need for explanation responses (replication result from the 2020 Study).
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Figure 81: Boxplot of the Need for explanation responses (combined result).
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A.5 Expected properties

A.5.1 Explanation timing and verbosity preferences: Conclusions remain the same

Timing: “A priori” changed from *** to n.s. This has not changed our conclusion that participants

wanted robots to explain in situ, not at the end of the task. Verbosity: results remained the same.
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Figure 82: Timing and verbosity preferences (original result from the 2019 Study).
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Figure 83: Timing and verbosity preferences (replication result from the 2020 Study).
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Figure 84: Timing and verbosity preferences (combined result).
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A.5.2 Engagement importance/preference: Conclusions remain the same

Importance: no change in terms of statistical significance and significance levels. Preference: the

conclusion remains the same but fewer participants chose “Other”.
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Figure 85: Engagement (Look: Look at me, Raise: Raise volume, Other: Other (Please elaborate)).
[original result from the 2019 Study]
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Figure 86: Engagement (Look: Look at me, Raise: Raise volume, Other: Other (Please elaborate)).
[replication result from the 2020 Study]
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Figure 87: Engagement (Look: Look at me, Raise: Raise volume, Other: Other (Please elaborate)).
[combined result]
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A.5.3 Similarity to human explanation: Largely remained the same; the same conclusion

What: Scale point 2 moved from **** to ***, 3 from **** to *. How: scale point -1 moved from

n.s. to *, 2 from n.s. to ****, 3 from ** to n.s.
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Figure 88: Robot vs. human explanations in what and how (green line indicates median). [original
result from the 2019 Study]
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Figure 89: Robot vs. human explanations in what and how (green line indicates median). [replica-
tion result from the 2020 Study
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Figure 90: Robot vs. human explanations in what and how (green line indicates median). [com-
bined result]

A.5.4 Detail, summarization: Same conclusions

Detailed: scale point -2 moved from n.s. to **, 2 from n.s. to *, 3 from **** to n.s. Summarized:

scale point moved 3 from **** to **.
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Figure 91: Two summarization aspects (green lines indicate median values). [original result from
the 2019 Study]
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Figure 92: Two summarization aspects (green lines indicate median values). [replication result
from the 2020 Study]
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Figure 93: Two summarization aspects (green lines indicate median values). [combined result]
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